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A Novel Low-Complexity HMM Similarity Measure

Sayed Mohammad Ebrahim Sahraeian, Student Member, IEEE,

and Byung-Jun Yoon, Member, IEEE

Abstract

In this letter, we propose a novel similarity measure for comparing Hidden Markov models

(HMMs) and an efficient scheme for its computation. In the proposed approach, we proba-

bilistically evaluate the correspondence, or goodness of match, between every pair of states

in the respective HMMs, based on the concept of semi-Markov random walk. We show that

this correspondence score reflect the contribution of a given state pair to the overall similarity

between the two HMMs. For similar HMMs, each state in one HMM is expected to have only

a few matching states in the other HMM, resulting in a sparse state correspondence score

matrix. This allows us to measure the similarity between HMMs by evaluating the sparsity of

the state correspondence matrix. Estimation of the proposed similarity score does not require

time-consuming Monte-Carlo simulations, hence it can be computed much more efficiently

compared to the Kullback-Leibler divergence (KLD) thas has been widely used. We demonstrate

the effectiveness of the proposed measure through several examples.

Index Terms

Hidden Markov model (HMM) similarity measure, semi-Markov random walk, HMM com-

parison.
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A Novel Low-Complexity HMM Similarity Measure

I. INTRODUCTION

Due to the effectiveness in modeling symbol sequences, Hidden Markov models (HMMs)

have been widely used in various applications, such as speech recognition, image classification,

and computational biology. Many applications that employ HMMs for statistical data model-

ing require an effective similarity measure for comparing HMMs. For example, this may be

necessary in problems that involve clustering or classification of HMMs, or in the parameter

re-estimation process for training an HMM [1], [2]. Specific applications can be found in texture

retrieval and classification [3], [4], handwriting recognition [5], protein homology detection [6],

and speech recognition [7].

A conventional way for comparing two HMMs is to use the Kullback-Leibler divergence

(KLD) [8]. KLD measures the distance between two probability density functions (PDFs) P (x)

and P̂ (x) as:

DKL(P (x)‖P̂ (x)) =
∫
x
P (x) log

P (x)

P̂ (x)
dx. (1)

Since no closed-form expression exists for KLD between two HMMs, Juang and Rabiner [1]

proposed a Monte-Carlo approximation of this integral for comparing two HMMs λ1 and λ2

using a sequence of observed symbols:

DKL(λ1‖λ2) '
1

T
(logP (O|λ1)− logP (O|λ2)), (2)

where O = o1o2 · · · oT is an observation sequence of length T , generated by the model λ1.

Despite its simplicity, this approximation has several limitations that make it unsuitable for

some practical applications. First of all, this method has high computational cost, since T

should be large enough to obtain an accurate estimate of DKL(λ1‖λ2). Second of all, the estimate

may vary due to the random nature of the Monte-Carlo technique. To overcome this problem,

Do [2] proposed a technique for fast computation of an upper-bound of the KLD for HMMs

and dependence trees, and Silva and Narayanan [7] reported an upper-bound of the KLD

for transient HMMs. In addition to the KLD, several other measures have been proposed

for comparing HMMs. Examples include measures based on co-emission probability of two

HMMs [9], generalized probability product kernel [4], HMM stationary cumulative distribution

function [10], and Bayes probability of error [5].
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In this letter, we introduce a novel low-complexity HMM similarity measure that can accu-

rately evaluate the similarity between two HMMs. The proposed measure can be efficiently com-

puted based on the concept of semi-Markov random walk without requiring time-consuming

Monte-Carlo simulations. Through several examples, we demonstrate that this measure can

effectively capture the similarity between HMMs and can be computed using only a small

fraction of time needed for computing KLD.

II. HMM SIMILARITY MEASURE

A. Motivation and Approach

Let λ = (p,A,B) denote an HMM with parameters p, A, and B, where p is the initial state

distribution vector, A = [ai,j ] is the state transition probability matrix (ai,j is the transition

probability from state vi to state vj), and B = {bi} is the set of symbol emission probability

distributions (bi is the emission probability distribution at state vi). Suppose there are two

HMMs λ = (p,A,B) and λ′ = (p′,A′,B′), whose similarity we want to evaluate. One way to

evaluate the similarity between these HMMs is to consider the probability that the two HMMs

will generate identical observations. Consider the emission of the kth symbol by the respective

HMMs, whose underlying states are sk = vi in the HMM λ and s′k = v′i′ in λ′. The probability

that both HMMs will emit the same symbol will depend on the emission probabilities bi and

b′i, and a probabilistic similarity (or distance) measure Se(vi, v
′
i′), such as the KLD, can be

used to estimate how likely it is that the two HMMs will generate identical symbols. If we take

expectation of this measure Se(vi, v′i′) over all possible state pairs (vi, v
′
i′), the expected similarity

between λ and λ′ is given as:

ES(λ, λ′) = E[Se(vi, v
′
i′)] =

∑
∀i

∑
∀i′

πiπ
′
iSe(vi, v

′
i′), (3)

where π and π′ are the stationary distributions of the underlying Markov chains of λ and λ′,

respectively, assuming that they exist. ES(λ, λ′) reports how likely it is that λ and λ′ will emit

the same symbol at a given time, based on their state transition probabilities and the emission

probability distributions. Although ES(λ, λ′) can provide a measure of the overall similarity

between the HMMs, it does not explicitly capture the similarities and differences between each

pair of states vi ∈ λ and v′i′ ∈ λ′ in the respective HMMs. Instead, we can compare individual

states based on how likely it is that the respective HMMs will be at vi and v′i′ at a given
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time, and how likely they are to emit identical symbols. This leads to the definition of the state

correspondence matrix Q = [qi,i′ ], where qi,i′ is the correspondence score between two states vi in

λ and v′i′ in λ′, defined as the contribution of each state pair (vi, v
′
i′) in the expected similarity

ES(λ, λ′):

qi,i′ =
πiπ
′
i′Se(vi, v

′
i′)

ES(λ, λ′)
(4)

In general, the matrix Q is sparse for similar HMMs, since each state in one HMM will have only

a few (ideally, only one) matching states in the other HMM. This observation allows us to define

a low-complexity HMM similarity measure based on the sparsity of the state correspondence

matrix Q.

B. Semi-Markov Random Walk

Interestingly, we can interpret the state correspondence score qi,i′ in (4) based on the con-

cept of semi-Markov random walk. A semi-Markov process is a stochastic process that makes

state transitions according to a Markov chain but spends a random amount of time between

transitions [11]. Let the graphs G and G′ represent the state transition diagrams of λ and λ′,

respectively. Assume that we perform a simultaneous random walk on both G and G′, according

to the underlying state transition probabilities A and A′ of the corresponding HMMs. This is

equivalent to performing a random walk on the product graph G× of G and G′, where the

nodes in G× correspond to pairs of states (vi, v′i′) in the respective HMMs and the probability for

making a transition from a node (vi, v
′
i′) in G× to another node (vj , v

′
j′) is the product ai,ja′i′,j′ of

the corresponding transition probabilities in λ and λ′. The stationary distribution of the random

walk on this product graph is given by π× = π ⊗ π′, where the stationary distributions π and

π′ correspond to the normalized left eigenvectors of the state transition probability matrices A

and A′, respectively, and ⊗ is the Kronecker product [12]. Now assume that the walker spends

an average amount of time µj once it enters a given node v×j = (vi, v
′
i′) in the product graph

G×. If the mean time spent at the node v×j is proportional to the similarity between two nodes

(i.e., states) vi and v′i′ , such that µj ∝ Se(vi, v
′
i′), the proportion of time that the walker will

spend at v×j = (vi, v
′
i′) will be

π̃×j
=

π×j
µj∑

∀j π×j
µj

=
πiπ
′
i′Se(vi, v

′
i′)∑

∀i,i′ πiπ
′
i′Se(vi, v

′
i′)
. (5)

We can see that π̃×j
is identical to the state correspondence score qi,i′ shown in (4). Thus,

we can also view qi,i′ as the long-run proportion of time that the random walker stays at
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v×j = (vi, v
′
i′), or equivalently, the proportion of time that it stays simultaneously at vi in G and

v′i′ in G′. According to this model, qi,i′ = π̃×j
will be larger if the symbol emission probability

distributions bi and b′i are more similar to each other. Furthermore, qi,i′ also incorporates the

stationary probability of visiting the states vi and v′i′ , and it increases as πi and π′i′ increase. In

this way, each element qi,i′ of the state correspondence matrix Q provides an effective measure

of similarity between a pair of states in the respective HMMs.

C. Comparing Symbol Emission Probability Distributions

We can evaluate the similarity between states as follows:

Se(vi, v
′
i′) = 1/D(bi‖b′i′) or Se(vi, v′i′) = e−kD(bi‖b′

i′ ), (6)

by using a distance (or dissimilarity) measure D(bi‖b′i′) for the underlying symbol emission

probability distribution bi (at state vi) and b′i′ (at state v′i′), where k is a constant. We have

several different choices for D(.‖.) [13], [14], where some examples are shown below. In what

follows, we assume that the HMMs emit discrete observations for simplicity, but extension to

the continuous case is straightforward.

1) Symmetric KLD: Defined as 1
2 [DKL(P‖Q) + DKL(Q‖P )], where DKL(P‖Q) is the KLD be-

tween two probability mass functions P and Q.

2) λ-divergence: An alternative to the original KLD defined as Dλ(P‖Q) = λDKL
(
P‖λP +(1−

λ)Q
)
+ (1− λ)DKL

(
Q‖λP + (1− λ)Q

)
. For λ = 0.5, this measure reduces to the Jensen-Shannon

divergence.

3) α-divergence: Defined as Dα(P‖Q) = 1
α−1 log(

∑
i P (i)

αQ(i)1−α), for parameter α > 0. This

measure reduces to the Bhattacharyya distance for α = 0.5 (except for a scale factor of two).

D. Measuring the Sparsity of the State Correspondence Matrix

As discussed earlier, we expect that the state correspondence matrix Q will be sparse when

the two HMMs λ and λ′ are similar to each other. More precisely, every row and column in

Q should be sparse when we have similar HMMs, and in an ideal case, Q will resemble a

permutation matrix. Therefore, we can measure the similarity between HMMs by evaluating

the sparsity of the state correspondence matrix Q. This is conceptually similar to using a graph

kernel framework for comparing the topology of the given HMMs [12]. Graph kernels compare

substructures of graphs (such as walks, paths, or trees) that are computable in polynomial
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time to measure the similarity between two graphs. In our method, we use this concept in a

probabilistic fashion, in terms of semi-Markov random walk on the product graph of the two

HMMs.

Based on this idea, we propose the following similarity measure for comparing two HMMs

λ and λ′:

S(λ‖λ′) , 1

2

[
1

M

M∑
i=1

H(ri) +
1

M ′

M ′∑
j=1

H(cj)

]
, (7)

where ri is the ith row of Q, cj is the jth column of Q, and M and M ′ respectively are the

number of rows and columns of Q, which correspond to the number of states in λ and λ′. The

function H(u) is a normalized sparsity measure for the vector u. There are various methods for

measuring sparsity [15], where examples include the norm measures (l0, l0ε , l1, lp, l2

l1 ), entropy

measures, Hoyer measure, pq-mean, and the Gini Index. In this work, we adopt the Gini Index,

since it has many useful properties that make it a good sparsity measure [15]. The Gini Index

of a vector u of length N is defined as:

GI(u) = 1− 2

N∑
k=1

u(k)

‖u‖1

(
N − k + 1

2

N

)
, (8)

where ‖u‖1 is the `1 norm of u, and u(k) is the kth smallest element of u, such that u(1) ≤ u(2) ≤

· · · ≤ u(N). In (7), we use the normalized Gini Index H(u), which is defined as:

H(u) ,
N ·GI(u)
N − 1

=
N

N − 1
− 2

N∑
k=1

u(k)

‖u‖1

(
N − k + 1

2

N − 1

)
, (9)

for N > 1. For N = 1, we define H(u) , 0. According to this definition, a vector u0 with only

one nonzero element attains the maximum sparsity score of H(u0) = 1.

E. Summary

To summarize, the proposed HMM similarity measure S(λ‖λ′) can be computed in the fol-

lowing steps:

1) Compute stationary distributions π and π′ for λ and λ′.

2) Compute D(bi‖b′i′) for every pair of states vi ∈ λ and v′i′ ∈ λ′, using one of the dissimilarity

measures given in Section II-C.

3) Evaluate Se(vi, v′i′) as defined in (6).

4) Estimate the state correspondence matrix Q as in (4).

5) Compute the HMM similarity measure S(λ‖λ′) as defined in (7), based on the the sparsity

measure in (9).
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III. EXPERIMENTAL RESULTS

In this section, we present several numerical experiments demonstrate the effectiveness of the

proposed similarity measure. We report the results for six different combinations of Se(vi, v′i′)

and D(.‖.), where we consider both Se(vi, v
′
i′) = 1/D(bi‖b′i′) and Se(vi, v

′
i′) = e−kD(bi‖b′

i′ ) and

choose D(.‖.) among the symmetric KLD, Jensen-Shannon divergence (JS), and Bhattacharyya

distance (BTC). To compare the performance of our measure with the KLD between two HMMs,

in each experiment, we also report symmetric KLD for an observation sequences of length

T = 10, 000.

A. Effect of Changing the Model Parameters

First, we study the effect of varying the state transition matrix. Consider the two Markov

chains shown in Fig.1(a) with transition matrices T1 and T2. The matrix T1 represents a Markov

chain, in which the second state has a higher probability of being visited compared to the other

states, while T2 represents a Markov chain with a uniform stationary distribution. We define

the transition probability matrices of λ and λ′ as A = T1 and A′ = (1−δ)T1+δT2, respectively.

So A is fixed, while A′ changes from T1 to T2 by varying δ from 0 to 1. We define the emission

probability matrices B = [bi,j ] and B′ = [b′i,j ] as:

B =


0.25 0.75 0 0

0.35 0.65 0 0

0 0 0.15 0.85

0 0 0.45 0.55

 ,B
′ =


0.2 0.8 0 0

0.3 0.7 0 0

0 0 0.1 0.9

0 0 0.4 0.6

 ,

where bi,j and b′i,j are the probability of emitting the jth symbol at the ith state in the respective

HMMs. As we see in Fig.1(b), the similarity between the two HMMs decreases as δ increases,

and as a result, as A′ diverges from A.

Next, we study the effect of changing the emission probability matrix. In this experiment,

we let A = A′ = T3 (defined in Fig.1(a)) and define B = E1 and B′ = (1 − δ)E1 + δE2,

where E1 = I4×4 and E2 = 0.25 · 14×4. Here, I denotes the identity matrix and 1 denotes an

all-one matrix. Therefore, B′ for λ′ changes from deterministic symbol emission (B′ = E1) to

a uniformly distributed emission (B′ = E2). We can see a similar trend in Fig.1(c) as before,

where the similarity between λ and λ′ effectively decreases for an increasing δ.
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(a) (b) (c)

Fig. 1. Effect of changing the HMM parameters on the proposed similarity measure: (a) Markov chains used in

the experiments. (b) Changes in the similarity measure when varying the transition probability matrix. (c) Similarity

changes when varying the emission probability matrix.

To see how similarity affects the sparsity of the state correspondence matrix, let us consider

two points δ = 0 and δ = 1 in Fig. 1(c) (for “exp(−0.5D),KLD”):

Q0 =


0.12 0 0 0

0 0.65 0 0

0 0 0.16 0

0 0 0 0.07

,Q1 =


0.04 0.08 0.04 0.03

0.08 0.19 0.10 0.07

0.04 0.10 0.05 0.03

0.03 0.07 0.03 0.02


As expected, Q0, corresponding to similar HMMs (δ = 0), is a sparse matrix, while Q1, for

distant matrices (δ = 1), is not.

B. Effect of Permuting the States

In this experiment, we define A = T3, A′ = (1−δ)T3+δT4, B = E1, and B′ = (1−δ)E1+δE2,

where T3 and T4 are the transition matrices of two right Markov chains shown in Fig. 1(a), and

E1 = I4×4 and E2 = I′4×4, where I′4×4 denotes the 90◦ rotated version of the identity matrix

I4×4.

As we can see, for δ = 0, the two HMMs are identical. When we increase δ, λ′ diverges from

λ, but when we reach δ = 1, λ′ becomes essentially identical to λ except that its states are

permuted. Therefore, we expect that the similarity between λ and λ′ will be maximized at both

δ = 0 and δ = 1. In fact, this can be observed in Fig.2.
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Fig. 2. Effect of permuting the states.

C. Comparing Multivariate Gaussian HMMs

Finally, we demonstrate the effectiveness of the proposed similarity measure for compar-

ing HMMs whose emission probabilities follow a multivariate Gaussian distribution. In this

experiment, we use the symmetric KLD as the dissimilarity measure between states in the

respective HMMs, utilizing the closed-form expression of KLD for two d-dimensional Gaussian

distributions as given in [2].

Here, we let A = A′ =
(
0.6 0.4
0.4 0.6

)
and define the emission probability distributions of the two

HMMs as multivariate Gaussian with parameters µ1 =
(
1
1

)
, µ2 = 3µ1, µ′1 =

(
1

3−δ
)
, µ′2 =

(
3

1+δ

)
,

C1 = C′1 = I2×2, C2 =
(

1 0.3
0.3 1

)
, and C′2 =

(
1 0.1
0.1 1

)
. The effect of changing δ from 0 to 2 is

shown in Fig.3. As we expect, we can see that the similarity increases as δ increases.

D. Comparison with KLD

As we can see in the previous simulation results, even the use of long observation sequences

with T = 10, 000 symbols are generally not enough to get an accurate estimate of KLD. Un-

like KLD, the proposed similarity measure can be accurately estimated without any random

fluctuations, and it can be computed around a thousand times faster in Matlab.

IV. CONCLUSION

In this work, we proposed a novel low-complexity HMM similarity measure. The proposed

scheme first estimates the correspondence score between states in different HMMs, based on

the concept of semi-Markov random walk. The similarity between the given HMMs can then be

measured by evaluating the sparsity of the state correspondence score matrix. Estimation of the

proposed measure does not require Monte-Carlo simulations, hence can be accurately estimated

in a much more efficient manner, compared to the conventional KLD. The low-complexity of

November 20, 2010 DRAFT



IEEE SIGNAL PROCESSING LETTERS 9

Fig. 3. Comparing multivariate Gaussian HMMs.

the proposed approach makes this novel similarity measure especially suitable for applications

with large datasets or complex HMMs, or those that require real-time computing. The proposed

measure is bounded, symmetric, and can be effectively implemented for both HMMs with

discrete or continuous emission probabilities.

REFERENCES

[1] B.-H. Juang and L. R. Rabiner, “A probabilistic distance measure for hidden markov models,” AT&T Technical

Journal, vol. 64, no. 2, pp. 391 – 408, 1985.

[2] M. Do, “Fast approximation of kullback-leibler distance for dependence trees and hidden markov models,”

Signal Processing Letters, IEEE, vol. 10, no. 4, pp. 115 – 118, apr 2003.

[3] M. Do and M. Vetterli, “Rotation invariant texture characterization and retrieval using steerable wavelet-domain

hidden markov models,” Multimedia, IEEE Transactions on, vol. 4, no. 4, pp. 517 – 527, dec 2002.

[4] L. Chen and H. Man, “Fast schemes for computing similarities between gaussian hmms and their applications

in texture image classification,” EURASIP J. Appl. Signal Process., vol. 2005, pp. 1984–1993, 2005.

[5] C. Bahlmann and H. Burkhardt, “Measuring hmm similarity with the bayes probability of error and its

application to online handwriting recognition,” in In Proc. of the 6th ICDAR, 2001, pp. 406–411.

[6] J. Soding, “Protein homology detection by HMM-HMM comparison,” Bioinformatics, vol. 21, no. 7, pp. 951–960,

2005.

[7] J. Silva and S. Narayanan, “Upper bound kullback-leibler divergence for transient hidden markov models,”

Signal Processing, IEEE Transactions on, vol. 56, no. 9, pp. 4176 –4188, sept. 2008.

[8] S. Kullback, Information Theory and Statistics. New York: Wiley, 1958.

[9] R. B. Lyngsø, C. N. S. Pedersen, and H. Nielsen, “Metrics and similarity measures for hidden markov models,”

in Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology. AAAI Press,

1999, pp. 178–186.

[10] J. Zeng, J. Duan, and C. Wu, “A new distance measure for hidden markov models,” Expert Systems with

Applications, vol. 37, no. 2, pp. 1550 – 1555, 2010.

[11] S. M. Ross, Stochastic Processes, 2nd ed. John Wiley & Sons, Inc., 1996.

[12] S. V. N. Vishwanathan, N. N. Schraudolf, R. Kondor, and K. M. Borgwardt, “Graph kernels,” Journal of Machine

Learning Research, vol. 11, pp. 1201–1242, Apr 2010.

November 20, 2010 DRAFT



IEEE SIGNAL PROCESSING LETTERS 10

[13] M. Basseville, “Distance measures for signal processing and pattern recognition,” Signal Processing, vol. 18, no. 4,

pp. 349 – 369, 1989.

[14] L. Lee, “Measures of distributional similarity,” in 37th Annual Meeting of the Association for Computational

Linguistics, 1999, pp. 25–32.

[15] N. Hurley and S. Rickard, “Comparing measures of sparsity,” Information Theory, IEEE Transactions on, vol. 55,

no. 10, pp. 4723 –4741, oct. 2009.

November 20, 2010 DRAFT

View publication statsView publication stats

https://www.researchgate.net/publication/224201875

