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Abstract
Histogram analysis has nowadays gain in interest, and a lot of work yet address this task. In most of the existing approaches, 
histograms are manipulated as simple vectors or as statistic distributions. As a consequence, only the bin values of the 
histograms are mostly considered and the histograms visual shapes are generally neglected. In this paper, hidden Markov 
models (HMMs) are associated with finite sets of histograms to capture both: the bin values and the visual shapes of the 
histograms contained in these sets, regardless of their bin sizes. The similarity rate between these HMMs is then used to 
compare two finite sets of histograms. Experimented in several areas within and beyond machine learning, the proposed 
approach exhibited relevant performances which outperformed the existing work in the hierarchical classification of the 
databases GTZAN+ and Corel.

Keywords  Histogram comparison · Hidden Markov models · Color image comparison · Comparison of function curves · 
Automatic taxonomy generation · Hierarchical classification · Text document comparison

1  Introduction

Histogram-based local descriptors are nowadays used in sev-
eral domains. In music processing, they are used to compute 
music descriptors like rhythm histograms [1]. They are also 
thoroughly used in image processing with image descrip-
tors like color histograms [2], edge direction histograms [3] 
or Tamura coarseness histograms [4]. Therefore, histogram 
analysis has become an unavoidable exercise on which a 
lot of works have already been devoted. Histogram analysis 

can be divided into two main axes: (1) histogram compari-
son where several distances and similarities between two 
histograms are proposed [2, 5–15]; (2) histogram modeling 
where models are designed to capture some histogram prop-
erties [16, 17]. These models are generally used for catego-
rization purposes.

One of the highest difficulties in comparing two histo-
grams is the choice of the suitable distance or similarity 
measure. This is due to the great number of existing meas-
ures. This difficulty is accentuated by the fact that every 
existing measure captures a specific similarity property 
between the two histograms h1 and h2 that must be com-
pared. As an example, the Euclidean distance measures the 
straight-line distance between h1 and h2 , while the Bhat-
tacharyya distance [18] rather approximates the amount of 
overlap between them. Furthermore, most of the existing 
measures only enable to compare histograms with identi-
cal number of bins, whereas comparing histograms with 
different bin sizes may be very useful. The Earth Movers 
distance [13] addresses this situation.

In most of the existing approaches related to histogram 
comparison, a histogram h composed of n bins is manipu-
lated as a pure n-dimensional vector of ℝn . Therefore, the 
distance measures that are commonly used to compare vec-
tors in ℝn are also used to compare histograms. Sometimes 
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histograms are rather manipulated as statistic distributions 
and are compared with distance measures dedicated to sta-
tistic distributions like the �2-statistics distance. The use of 
such distance measures leads to a huge lost of information, 
because a histogram is basically something more subtle. 
Indeed, it can be seen as an ordered sequence of bin values 
whose variations are meaningful. These variations deter-
mine the visual shape of the histogram. Unlike vectors or 
statistic distributions whose components can be compared in 
any order, histograms embed a natural sequentiality in the 
occurrences of their bin values that must be considered to 
measure their similarity.

This observation is confirmed when the graphical represen-
tations of vectors and histograms are considered. A n-dimen-
sional vector is generally represented by an arrow in ℝn . But a 
histogram is represented by a bar diagram where: (1) the value 
of the kth bin determines the height of the kth bar and (2) the 
sequential order in which the bin values vary determines the 
shape of the histogram. Consider, for example, the three fol-
lowing histograms h1 = [5, 4, 2] , h2 = [2, 4, 5] , h3 = [4, 8, 3] , 
where h2 is h1 taken in reverse order and h3 is completely dif-
ferent from the two other histograms. The Euclidean distance 
of the pairs (h1, h2) and (h1, h3) is 3

√
2 , which means that h1 is 

equidistant to the two other histograms. But this information 
is not meaningful regarding the graphical representations of 
h1, h2 and h3 in Fig. 1a–c.

The value 3
√
2 is the distance between these histograms 

according to their bin values, but it includes no information 
about their visual shapes. Indeed, it is not easy even for a 
human being, to compare the shapes of these histograms 
because: h1 always decreases, h2 always increases, but h3 first 
increases and then decreases.

Histogram modeling often deals with classification prob-
lems where many classes are available, each class ci being 
represented by |ci| histograms (instances) with identical num-
ber of bins. A model is generally initialized and trained for 
each class ci to capture the inner properties of its instances. 
An obvious drawback of these techniques is the elevated 
time cost of the model training. Some authors have studied 
models without long training phases. This is the case in [17] 
where discrete Markov models (DMMs) are used to model 

histograms in image categorization. The color histogram 
of each image of a class ci is first transformed into a quasi-
histogram, and then, the quasi-histograms of all the images 
in ci are used to estimate the two parameters of the model 
associated with ci . To determine the class of an image I, its 
quasi-histogram qI is first computed and then I is associated 
with the class whose model produced the highest probabil-
ity to observe qI . The author also proposed the possibility to 
combine these DMMs with region hidden Markov models 
(HMMs) to slightly improve the performances that method.

Another limitation of existing histogram modeling 
approaches is the fact that in some cases, the training of 
the model of a class ci depends on the data of another class 
cj . This limitation can be observed in [16] where sequences 
of histograms are modeled by sequential patterns to per-
form hierarchical music genre recognition. Such training 
dependencies imply that the resulting model of ci does not 
exclusively capture the properties of its instances. This 
is not correct because the existence of class ci does not 
depend on the existence of another class.

Beyond all these limitations, we have found no approach 
specially designed to compare two finite sets of histo-
grams. Indeed, existing approaches related to histogram 
comparison can only compare two single histograms with 
identical bin size. It is true that the problem of compar-
ing two finite sets H1 and H2 containing histograms with 
identical bin size can be basically tackled by considering 
each set as a cluster. The comparison can then be realized 
by applying common cluster distances like the Minimum 
or the Maximum histogram-based distance between all the 
pairs (h1, h2) with h1∈H1 and h2∈H2 . But such an approach 
is limited because the final result does take into account 
the specific properties of all the histograms in H1 and H2.

This paper addresses histogram modeling and histogram 
comparison with the advantage that the proposed approach 
attempts to avoid most of the aforementioned limitations. 
More precisely, HMMs are trained to capture: (1) the bin 
values of the histograms and (2) the sequential bin values 
variations of the histograms in order to take their shapes into 
account. Since HMMs can be trained either for one single 
sequence or for multiple sequences, the proposed approach 
produces a robust model for one single histogram as well as 
for a finite set of histograms. The similarity between these 
HMMs is later computed to perform histogram comparison. 
Given that the training of a HMM can be performed what-
ever are the lengths of the training sequences, the proposed 
approach can consequently realize the comparison regardless 
of the bin sizes of the histograms. The design of each HMM 
only involves the data of the concerned histograms. Therefore, 
there are no training dependencies. The performances of the 
proposed approach are finally evaluated in color image com-
parison, in the comparison of function curves, in text docu-
ment comparison and in automatic taxonomy generation.Fig. 1   Example of histograms to be compared. a h1 . b h2 . c h3
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The rest of this paper is organized as follows: Sect. 2 
presents the sate of the art on histogram comparison, fol-
lowed by a detailed presentation of the proposed approach 
in Sect. 3. Experimental results are presented in Sect. 4, and 
the last section is devoted to the conclusion.

2 � State of the art

2.1 � Related work

Four main categories of similarity and distance measures 
between two histograms can be distinguished in the litera-
ture [18]. The first three categories apply bin-to-bin func-
tions, and the last category is empowered by the use of 
cross-bin information. Table 1 lists up to 20 existing simi-
larity and distance measures between two histograms, each 

measure being associated with its corresponding category. 
Beside the content of Table 1, numerous other similarity and 
distance measures between two histograms have yet been 
proposed. As an example, the authors of [20] proposed a 
distance between sets of measurement values as an interest-
ing measure of dissimilarity between two histograms. A fast 
algorithm based on the concept of histograms signatures 
was also proposed in [21] to compute the distance between 
histograms. In their book published in 2016, Ionescu and 
Popescu [22] surveyed many other existing distance meas-
ures between histograms.

Some other researchers rather focused on distance metric 
learning approaches which greatly improve the performances 
of metrics-dependent algorithms such as the k-means clus-
tering or the K-NN algorithms. These approaches have there-
fore gained popularity in many areas within machine learn-
ing such as in pattern recognition and image analysis [23, 

Table 1   Some relevant existing similarity and distance measures between two histograms h1 and h2 grouped in four categories

The acronym used in the literature for each similarity/distance is in the third column

Category Name Acro. Short description

Derived from heuristics Manhattan L1 Sum of bin-to-bin variations between h1 and h2
Euclidean L2 Straight-line distance between h1 and h2
Tchebychev L∞ Maximum bin-to-bin variation between h1 and h2
Minkwoski Lp Generalization of L1 , L2 and L∞
Intersection [2] D∩ Sum of minimum bin-to-bin values between h1 and h2
Cosine CO The cosine of the angle between h1 and h2 extracted 

from their dot product
Pearson’s correlation [5] CR Linear dependance between h1 and h2
Canberra [6] CB Weighted version of the L1 distance

Derived from nonparametric test statistics Hellinger [19] HL Quantifies the similarity between h1 and h2
Kolmogorov–Smirnov [18] KS Maximal divergence between two cumulative distri-

butions
Match [18] MA Sum of absolute distances between two cumulative 

distributions
Cramer–Von Mises [18] CM Penalizes the divergence of between two cumulative 

distributions quadratically as it sums them
�2-statistics [8] CS Evaluates how likely it is that any observed difference 

between two distributions arose by chance
Bhattacharyya [18] BH Approximates the amount of overlap between two 

distributions
Derived from information-theoretic divergence Kullback–Leibler divergence [9] KL Measures how inefficient on average it would be to 

code h1 using h2 as true distribution for coding
Jeffrey divergence [18] JD Stable version of the KL divergence

Using cross-bin information Quadratic form [10] QF The similarity match between h1 and h2
Quadratic-Chi [11] QC Utilizes the normalization power of the Chi-square 

along with cross-bin relationship presented by the 
QF distance

Diffusion [12] DF Models the distance between two histograms as a 
temperature field and considers the diffusion process 
on the field

Earth Movers [13] EM Least amount of work needed to transport earth or 
mass from one distribution to the other
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24]. In [15], a nonlinear distance metric learning approach 
dedicated to histograms is proposed. The authors of that 
paper generalized the bin-to-bin �2-statistics distance in 
order to learn a metric that strictly preserves the histograms 
properties. This approach exhibited more reliable results 
than the �2-statistics distance.

Unfortunately, all the aforementioned approaches can 
only compare two single histograms with identical bin 
size. Indeed, despite our research we did not find an exist-
ing approach related to histogram comparison capable of 
comparing two finite sets containing histograms with differ-
ent bin sizes. However, there are many problems for which 
such a capability is necessary. Suppose, for example, that 
we want to compare the efficiency of two basketball players 
x and y during their respective entire careers in professional 
league. To achieve this objective, we decide to construct two 
histograms hx and hy such that the ith bin of each histogram 
represents the number of points that the considered player 
scored during his ith match in the professional league. The 
experience starts from the first match and ends with the last 
match of each player in the professional league. Since it is 
very unlikely that both players count the same number of 
matches at the end of their respective professional careers, 
this experience leads to the comparison of two histograms 
hx and hy with different numbers of bins. Furthermore, if 
the experience no longer targets only two different play-
ers x and y, but rather targets two sets X = {x1,… , xm} and 
Y = {y1,… , yn}, respectively, composed of m and n players, 
then it will now be a question of comparing two finite sets 
HX = {hx1 ,… , hxm} and HY = {hy1 ,… , hyn} containing his-
tograms with different numbers of bins. In such a context, all 
the related works cited in this paper are not applicable. This 
justifies the interest of the proposed approach.

2.2 � Hidden Markov models

2.2.1 � Definition of a HMM

A HMM � = {A,B,�} is characterized by:

1.	 Its number N of states. The set of states is noted 
S = {S1, S2,… , SN}, and generally, the state of the model 
at time t is noted qt ∈ S.

2.	 Its number M of observation symbols. The set of sym-
bols is noted V = {v1, v2,… , vM}, and the symbol 
observed at time t is generally noted Ot ∈ V .

3.	 Its state transition probability distribution A = {aij} 
where aij = P(qt+1 = Sj|qt = Si) with 1 ≤ i, j ≤ N.

4.	 Its observation symbols probabilities distributions 
B = {bi(k)} in each state Si where bi(k) = P(vk at time 
t|qt = Si) with 1 ≤ i ≤ N and 1 ≤ k ≤ M.

5.	 Its initial state probability distribution � = {�i} where 
�i = P(q1 = Si) with 1 ≤ i ≤ N.

2.2.2 � Sequence generation with a HMM

Equation 1 shows how a HMM � = {A,B,�} can generate 
a sequence O = O1,O2,…,OT composed of T observation 
symbols. In the rest of this paper, such a representation will 
be called a generated Markov chain.

This generated Markov chain is obtained using the follow-
ing algorithm:

1.	 Select an initial state Sj ∈ S with respect to the distribu-
tion � and set t = 0.

2.	 Set t = t + 1 , then edit the current state to qt = Sj
3.	 Select a symbol Ot ∈ V  observed at state qt with respect 

to the distributions in B.
4.	 If ( t < T) go to step 5, else terminate.
5.	 Select a state transition to be realized from state qt to 

another state Sj ∈ S with respect to the distribution A, 
then go to step 2.

2.2.3 � HMM probability computing and training

Consider an observation sequence O = O1,O2,…,OT and a 
HMM � = {A,B,�} . The probability P(O|�) to observe O 
given � is efficiently calculated by the Forward–Backward 
algorithm [25]. This algorithm runs in �(T .N2).

Given an observation sequence O = O1,O2,…,OT , the 
parameters of a HMM � = {A,B,�} can be re-estimated in 
order to maximize the value of P(O|𝜆̄) , where 𝜆̄ = {Ā, B̄, 𝜋̄} 
is the re-estimated model. This re-estimation is done by the 
Baum–Welch algorithm [25]. This algorithm improves the 
probability of O being observed from the model by itera-
tively using 𝜆̄ in place of � and repeating this re-estimation 
until 𝜆̄ = 𝜆 , or until a user-defined maximum number of 
iterations is reached.

It is also possible to train a HMM to maximize the value 
of P(O�𝜆̄) = ∑K

k=1
P(O(k)�𝜆̄) where O = {O(1),… ,O(K)} is a 

set of K observation sequences and O(k) = O
(k)

1
…O

(k)

Tk
 is the 

kth observation sequence of O. In the case of multiple 
sequences, only the distributions A and B are re-estimated 
by the Baum–Welch algorithm because 𝜋̄ can be statistically 
determined from the initial states of the K observed 
sequences.

2.2.4 � Stationary distribution of a HMM

A vector � = (�1,… ,�N) is a stationary distribution of 
a HMM � = {A,B,�} if: (1) 

∑
j�j = 1 , (2) ∀j,�j ≥ 0 , (3) 

(1)
(symbols) O1 O2 … OT

↑ ↑ ⋮ ↑

(states) q1 → q2 → … → qT
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� = �.A ⇔
�
�j =

∑
i(�i.aij),∀j

�
 . �j estimates of the overall 

proportion of time spent by � in state j. This distribution can 
be extracted from any line of the matrix Ak when k → +∞.

2.2.5 � Similarity between two HMMs

Numerous distance and similarity measures between two 
HMMs have yet been proposed in existing work [26–32]. All 
these metrics are limited and their limitations are reviewed 
in [33] where an accurate low-complexity similarity measure 
between two HMMs � and �′ was proposed. This measure 
evaluates the probability that � and �′ will generate identi-
cal observation sequences following the algorithm described 
in Sect. 2.2.2. The authors of [33] proved that this measure 
requires only a small fraction of the computation time of exist-
ing measures. For all these reasons, it is this measure that has 
been selected to compare HMMs in this paper. Let us note 
Sim(�, ��) ∈ [0, 1] the selected similarity measure between 
two HMMs � = {A,B,�} and �� = {A�,B�,��} proposed 
in [33]. If n and n′ are, respectively, the number of states of � 
and �′ , then Eq. 2 shows how to compute Sim(�, ��).

In Eq. 2:

1.	 rowj and colk are, respectively, the jth row and the kth 
column of the state correspondence matrix Q = {qii� } 
between � and �′ . For every state i of � and i′ of �′ , qii′ 
is calculated using Eq. 3 where � and �′ are the station-
ary distributions of � and �′ . The value S(i, i�) is calcu-
lated with Eq. 4. In this work, the parameters k = 2 and 
� = 0.5 have been used to compute S(i, i�) . 

2.	 The function G(x) is the normalized Gini Index 
defined in Eq. 5. In that equation, m is the number 
of components x, ||x||1 is the sum of the components 
of x and x(k) is the kth smallest element of x such that 
x(1) ≤ x(2) ≤ ⋯ ≤ x(m) . If x is the null vector, then 
G(x) = 0 . 

(2)Sim(�, ��) =
1

2

[
1

n

n∑
j=1

G(rowj) +
1

n�

n�∑
k=1

G(colk)

]
.

(3)qii� =
�i�

�
i�
S(i, i�)∑

∀i,i��i�
�
i�
S(i, i�)

,

(4)
S(i, i�) = e

−k.D� (bi,b
�

i�
)
, where

D�(bi, b
�
i�
) =

1

�−1
log

�∑
k
(bi(k))

� .(b�
i�
(k))1−�

�
.

2.3 � Problem statement

As given in Sect. 2.1, there exist a huge number of dis-
tance and similarity measures between histograms. The 
problem is that in all the existing approaches we reviewed, 
only two single histograms with identical bin sizes are 
compared. Furthermore, existing histograms modeling 
approaches suffer from training dependencies. The goal of 
this paper is to propose a HMM-based approach that can 
accurately model finite sets of histograms without training 
dependencies. The similarity rate between these HMMs is 
later computed to perform histogram comparison. The pro-
posed histogram modeling approach takes into account the 
bin values as well as the visual shapes of the histograms, 
whatever are their bin sizes.

The choice of HMMs in this paper is first motivated by 
the fact that they embed a natural temporality; thus, they are 
adequate to capture the sequential variations of bin values in 
the histograms. Additionally, HMMs are managed by robust 
algorithms whose efficiency and accuracy do not more need 
to be demonstrated.

3 � The proposed approach

3.1 � Main idea of histograms modeling

Equation 1 depicts a generated Markov chain produced by a 
HMM � . When a deep attention is paid to the appearance of 
this generated Markov chain, one can observe a high similar-
ity degree with the visual shape of a histogram. Indeed, if the 
symbols Ot (1 ≤ t ≤ T) are positive real numbers and if the 
height of each up arrow is proportional to the value of the 
symbol on which it points, then Eq. 1 becomes a histogram 
with the states qt as bin labels.

It is from this observation that arises the idea to transform 
each histogram h of a set H into a generated Markov chain 
similar to the one depicted in Eq. 1. The resulting generated 
Markov chains will later be used to initialize and train a 
HMM associated with H. In this work, instead of analyzing 
each histogram h ∈ H itself, we rather prefer to analyze its 
corresponding normalized histogram noted here as ĥ . This 
normalization is crucial because it enables to compare histo-
grams according to their visual shapes, with their bin values 
always in the range [0, 100] regardless of their real ampli-
tudes. These amplitudes will later be taken into account at 
the end of the comparing process.

(5)G(x) =
m

m − 1
− 2

m∑
k=1

x(k)

||x||1

(
m − k +

1

2

m − 1

)
.
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More formally, the normalized histograms associated 
with the histograms in the set H = {h1,… , hM} are first cal-
culated and saved in the set Ĥ = {ĥ1,… , ĥM} . Then the gen-
erated Markov chains of these normalized histograms are 
computed and saved in the set Δ

Ĥ
= {�

ĥ1
,… , �

ĥM
} . Finally, 

the underlying HMM �
Ĥ

 associated with Ĥ is initialized and 
trained using the Baum–Welch algorithm according to the 
content of Δ

Ĥ
 . Figure 2 summarizes the process of HMM 

design.

3.2 � Methodology for histogram comparison

Let H1 and H2 be two sets of histograms. In this paper, the 
similarity between these two sets is evaluated according to 
the methodology presented in Fig. 3. Two HMMs �

Ĥ1
 and 

�
Ĥ2

 are first designed to capture the bin values and the visual 

shapes of their corresponding sets of normalized histograms. 
Then, the similarity �̂(H1,H2) between these two HMMs is 
computed and weighted by a suitable amplitude coefficient 
�(H1,H2) to obtain the desired similarity rate �(H1,H2).

3.3 � Histogram normalization

Consider a set H = {h1,… , hM} of histograms. In the first 
step of the proposed methodology, each histogram hi is nor-
malized with respect to the highest bin value of the histo-
grams in H. Equation 6 shows how to compute the normal-
ized histogram ĥi corresponding to hi . When this equation 
is applied to all the content of H, the set Ĥ = {ĥ1,… , ĥM} 
composed of normalized histograms is obtained.

 

3.4 � Histogram transformation

3.4.1 � Normalized histogram redefinition

After the normalization step, each normalized histogram 
ĥi ∈ Ĥ with (1 ≤ i ≤ M) must be transformed into a gener-
ated Markov chain produced by a particular HMM asso-
ciated with Ĥ , the parameters of this HMM will later be 
estimated. During this transformation, the bin values of ĥi 
will be captured as symbols and their variations will be cap-
tured as hidden states. The main obstacle to the realization 
of this transformation is related to the fact that the number 
of symbols and the number of hidden states of a HMM must 
always be finite. But this is not actually possible because the 
bin values in ĥi can take any value in the continuous interval 
[0, 100]. To overcome this difficulty, this interval is split into 
(N + 1) slices {v0, v1,… , vN} as shown in Eq. 7, where N is 
a user-defined integer.

(6)

⎧
⎪⎨⎪⎩

ĥi(j) =
100

Hmax

× hi(j), 1 ≤ j ≤ �hi� where
Hmax = max

1≤i≤M

�
max

1≤j≤�hi� {hi(j)}
� .

(7)
{

v0 = {0}

vk =]
100

N
× (k − 1),

100

N
× k], 1 ≤ k ≤ N.

Fig. 2   The HMM design process

Fig. 3   Proposed methodology to compute the similarity between two finite sets H1 and H2 of histograms
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If the value of N used to split the range [0, 100] is very 
high, then the length of each interval vk becomes tiny and 
all the elements in vk become very near to one unique 
value which is 100

N
× k . The elements of vk can therefore 

be considered as one single element that we identify here 
by the index k of the interval vk . This reasoning allows us 
to define the new histogram noted h̃i which is obtained by 
replacing each bin value of ĥi by the index k of the interval 
vk to which it belong as shown in Eq. 8. An additional bin 
whose value is zero is inserted at the index zero of h̃i , and 
this insertion enables the computation of an initial bin 
value variation from h̃i(0) to h̃i(1) . When this principle is 
applied to all the content of Ĥ  , the set H̃ = {h̃1,… , h̃M} 
is obtained.

3.4.2 � The transformation step

Once H̃ is calculated, the generated Markov chain �
ĥi
 asso-

ciated with each histogram ĥi ∈ Ĥ is derived according to 
the principle presented in Fig. 4 where Ti = |h̃i| . For each 
histogram h̃i ∈ H̃ , this transformation can be summarized 
as follows:

1.	 Set the initial time t = 1

2.	 Capture the current bin value variation as the current 
state qt = |h̃i(t) − h̃i(t − 1)|

3.	 Capture the current bin value as the current symbol 
Ot = h̃i(t) observed at state qt

4.	 If (t = Ti) then Terminate, else set t = t + 1 to make a 
transition to the next bin and go to step 2.

From Fig. 4, one can deduce that the number of symbols 
of the HMM associated with Ĥ is (N + 1) because these 
symbols are extracted from the set of slices {v0, v1,… , vN} 

(8)

{
h̃i(0) = 0(
h̃i(j) = k

)
⇔

(
�hi(j) ∈ vk

)
, 1 ≤ j ≤ |�hi|.

obtained after splitting the interval [0, 100]. In a similar 
way, one can deduce that the number of hidden states of 
this HMM is also (N + 1) because the maximum state is N 
and the minimum state is 0. When this algorithm is applied 
on all the content of H̃ , the set Δ

Ĥ
= {�

ĥ1
,… , �

ĥM
} of gen-

erated Markov chains is obtained.

3.4.3 � Example of histogram transformation

Consider the set H = {h} composed of only one histogram 
whose bin values are listed in Table 2. When the former 
principle is applied on h for N = 10 , the histograms ĥ and 
h̃ presented in Table 2 are obtained. Then, the generated 
Markov chain �

ĥ
 of ĥ presented in Fig. 5 is derived.

3.5 � HMM training

3.5.1 � Construction of the initial HMM

Consider a set H of histograms and its associated set of nor-
malized histograms Ĥ . In this work, the parameters of the 
initial HMM �0

Ĥ
 associated with Ĥ are set in such a way that 

they statistically capture the states transitions and the obser-
vation symbols probabilities distributions from the content 
of Δ

Ĥ
 . These  parameters are set as follows:

1.	 Its number of states is (N + 1) , where N is the user-
defined integer used to split the interval [0, 100]. The 
set of states is S = {0, 1, 2,… ,N}.

2.	 Its number of observation symbols is also (N + 1) , and 
the set of symbols is V = {0, 1, 2,… ,N}.

3.	 Its probability of transiting from state j to state k is 
calculated in Eq. 9 where transit(j, k,Δ

Ĥ
) is the num-

ber of transitions from state j to state k in Δ
Ĥ

 and 

Fig. 4   Generated Markov chain �
ĥi
 of ĥi

Table 2   Bin values of h, ĥ and h̃ 
when N = 10

Index 0 1 2 3 4 5 6 7 8 9

h 2 5 8 7 1 6 3 0 8

ĥ 25 62.5 100 87.5 12.5 75 37.5 0 100

h̃ 0 3 7 10 9 2 8 4 0 10

Fig. 5   Generated Markov chain �
ĥ
 of ĥ
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transit(j,−,Δ
Ĥ
) is the number of transitions from state j 

to any destination in Δ
Ĥ

 . 

4.	 Its probability of observing symbol k at state j is calcu-
lated in Eq. 10 where observe(k, j,Δ

Ĥ
) is the number of 

times where symbol k is observed at state j in Δ
Ĥ

 , and 
observe(−, j,Δ

Ĥ
) is the number of occurrences of state j 

in Δ
Ĥ

 , whatever is the symbol observed. 

5.	 Its probability that a sequence starts with state j is cal-
culated in Eq. 11 where start(j,Δ

Ĥ
) is the number of 

elements in Δ
Ĥ

 starting with state j. 

The parameters of �0
Ĥ

 are not probability distributions due 

to the 1 added to the denominator of their components. We 
intentionally introduced this error to avoid eventual divisions 
by zero in A0

Ĥ
 and B0

Ĥ
 . This also enabled us to avoid zero 

probabilities in �0

Ĥ
 . Similarly to what was done in [34], this 

error is solved here by equitably redistributing in each line 
the  miss ing quant i ty.  The readjusted model 
�1
Ĥ
= (A1

Ĥ
,B1

Ĥ
,�1

Ĥ
) is obtained as follows:

1.	 A1

Ĥ
[j, k] = A0

Ĥ
[j, k] +

1

N+1

�
1 −

∑N+1

l=1
A0

Ĥ
[j, l]

�
,

2.	 B1

Ĥ
[j, k] = B0

Ĥ
[j, k] +

1

N+1

�
1 −

∑N+1

l=1
B0

Ĥ
[j, l]

�
,

3.	 �1

Ĥ
[j] = �0

Ĥ
[j] +

1

N+1

�
1 −

∑N+1

l=1
�0
i
[l]
�
.

3.5.2 � The training phase

If (|Ĥ| = 1) , then the readjusted initial HMM �1
Ĥ

 of Ĥ is 

trained for one single sequence, and otherwise �1
Ĥ

 is trained 

for multiple sequences. In both situations, the training 
sequences are composed of observation symbols (bin values) 
in Δ

Ĥ
 . If we consider the set H = {h} used in the example of 

Sect. 3.4.3, then the initial HMM �1
Ĥ

 of Ĥ will be trained 

with the following sequence of symbols: 3, 7, 10, 9, 2, 8, 4, 
0, 10. The result of the training is the final HMM �

Ĥ
 associ-

ated with Ĥ.

(9)A0

Ĥ
[j, k] =

transit(j, k,Δ
Ĥ
)

transit(j,−,Δ
Ĥ
) + 1

.

(10)B0

Ĥ
[j, k] =

observe(k, j,Δ
Ĥ
)

observe(−, j,Δ
Ĥ
) + 1

.

(11)�0

Ĥ
[j] =

start(j,Δ
Ĥ
)

|Δ
Ĥ
| + 1

.

3.6 � Normalized similarity rate

3.6.1 � Definition

Consider two finite sets H1 and H2 of histograms. We define 
in Eq. 12 the normalized similarity rate �̂(H1,H2) between 
H1 and H2 as the probability that the HMMs �

Ĥ1
 and �

Ĥ2
 

associated with Ĥ1 and Ĥ2 generate identical observation 
sequences. In our context, this measure evaluates the cer-
tainty rate that �

Ĥ1
 and �

Ĥ2
 generate other very near 

histograms.

 

3.6.2 � Example of computation

Consider the three sets of histograms Hi = {hi} with 
(1 ≤ i ≤ 3) where h1 = [2, 5, 8, 7, 1, 6, 3, 0, 8] (the histogram 
used in Sect. 3.4.3), h2 = [15, 75, 45, 60, 30, 15, 15, 45, 75, 30] 
and h3 = [5, 25, 15, 20, 10, 5, 5, 15, 25, 10, 20, 25] . Although 
h2 and h3 seem to be very different at the first sight, their 
normalized histograms are quite identical. In fact, their 10 
first bins values are identical, and only the two last bins of 
ĥ3 are nonexistent in ĥ2 . Therefore, our expectation is that 
�̂(H1,H2) and �̂(H1,H3) must have quite identical values, 
given that ĥ2 and ĥ3 are quite similar.

The normalized similarity rates �̂(H1,H2) , �̂(H1,H3) 
and �̂(H2,H3) have been calculated for 19 values of N taken 
between 10 and 100 with a step of 5, and the results are pre-
sented in Fig. 6a. During this experience, the Baum–Welch 
algorithm was applied with a maximum number of iterations 
equal to 500, and this maximum value will be used in all 
the examples of this paper. All the experiments realized in 
this paper were executed on a personal computer with the 
following properties: (1) Processors: Intel(R) Core(TM) 
i7-2670QM CPU @2.2GHz 2.2GHz, (2) RAM: 8 GB. Fig-
ure 6a experimentally reveals that �̂ is unstable for values 
of (N < 50) and becomes very stable when (N ≥ 50) . For 
this reason, values of (N ≥ 50) are recommended, and in the 
rest of this paper, the value N = 50 is adopted. It can also be 
observed that �̂ effectively captures the fact that ĥ2 and ĥ3 are 
quite identical because the values of �̂(H2,H3) vary between 
98.85 and 99.41% when (N ≥ 50) . Figure 6a also shows that 
our former expectation is fulfilled because the curves associ-
ated with �̂(H1,H2) and �̂(H1,H3) are quite identical when 
(15 ≤ N ≤ 100) . The time costs in seconds of this experi-
ence are presented in Fig. 6b. This figure shows that when 
(N < 50) , the computation of ̂� takes less than 0.5 s. But when 
(N ≥ 50) , this time cost gradually augmented for each pair, 
almost reaching 4 s for the pair (H2,H3).

(12)�̂(H1,H2) = 100 × Sim(�
Ĥ1
, �

Ĥ2
) (in%).
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3.7 � The amplitude coefficient

At the beginning of the proposed methodology, we have nor-
malized the histograms. Now, to take the histograms ampli-
tudes into account in the similarity computation, the normal-
ized similarity rate must be weighted by a suitable amplitude 
coefficient. In order to determine the value of the ampli-
tude coefficient, the expression �̂(H1,H2) = 100% must be 
well interpreted. This expression means that (Ĥ1 ≈ Ĥ2) ; the 
accuracy of this approximation depends on the value of N. 
In the limit case where (Ĥ1 = Ĥ2) , this expression means 
that for each histogram h1 ∈ H1 , there exists a unique histo-
gram h2 ∈ H2 verifying (ĥ1 = ĥ2) . As it is proved in Eq. 13, 
(ĥ1 = ĥ2) implies that there exist two positive coefficients � and 
�′ such that (h1 = �h2) and (h2 = ��h1).

Equation 13 enables us to derive the symmetric amplitude 
coefficient �(H1,H2) computed in Eq. 14. According to this 
equation, �(H1,H2) is close to 0 when the histograms in H1 
and H2 have distant amplitudes. In the same way, �(H1,H2) 
is close to 1 when the amplitudes of the histograms in H1 and 
H2 are near.

(13)

(ĥ1 = ĥ2) ⇔

(
100

H1max

× h1 =
100

H2max

× h2

)

⇔ h1 =

(
H1max

H2max

)
h2

⇔ h1 = �h2 where � =

(
H1max

H2max

)

⇔ h2 = ��h1 where �� =

(
H2max

H1max

)
.

(14)�(H1,H2) =
min

(
H1max,H2max

)

max
(
H1max,H2max

) .

3.8 � Similarity rate computation

We propose in Eq. 15 to compute the symmetric similarity 
rate �(H1,H2) between two finite sets H1 and H2 of histograms 
by calculating their normalized similarity rate �̂(H1,H2) , 
weighted by their amplitude coefficient �(H1,H2).

Equation  15 produces the following similarity rates 
between the three sets H1 , H2 and H3 taken as examples in 
Sect. 3.6.2:

–	 �(H1,H2) =
min(8,75)

max(8,75)
× 47.79 =

8

75
× 47.79 = 5.10%

–	 �(H1,H3) =
min(8,25)

max(8,25)
× 47.04 =

8

25
× 47.04 = 15.05%

–	 �(H2,H3) =
min(25,75)

max(25,75)
× 98.85 =

25

75
× 98.85 = 32.95%.

In identical experimental conditions, we have compared 
the three histograms of Fig. 1a–c located in “Introduction” 
of this paper. The following results we obtained reveal that 
h3 has the same similarity rate with h1 and h2 unlike what was 
expressed by the Euclidean distance.

–	 �({h1}, {h2}) = 51.95%,

–	 �({h1}, {h3}) = 31.86%,

–	 �({h2}, {h3}) = 31.86%.

3.9 � Properties of �̂ and �

The first property that we state in this paper is related to the 
true nature of � which is only a similarity measure but not 
a metric.

Property 1  � is a similarity measure but not a metric.

Proof  �(H1,H2) is a similarity measure because it is derived 
from Sim(�

Ĥ1
, �

Ĥ2
) which is a similarity measure [33]. But 

(15)�(H1,H2) = �(H1,H2) × �̂(H1,H2) (in %).

Fig. 6   Values and time costs of �̂(H1,H2) , �̂(H1,H3) and �̂(H2,H3) when N varies between 10 and 100. a Values of the normalized similarity 
rates. b Time costs of the normalized similarity rates
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� is not a metric because it does not verify triangular ine-
quality. Indeed, in the first example of Sect. 3.8 we have 
𝜎(H2,H3) > 𝜎(H2,H1) + 𝜎(H1,H3)  b e c a u s e 
32.95 > (5.10 + 15.05) . 	�  □

The immediate consequence of Property 1 is that � can 
not be efficiently used to enhance the accuracy of metrics-
dependent algorithms like the K-NN algorithm in a flat 
classification process. But, � can rather be used to initially 
organize the classes into a hierarchical structure (a taxon-
omy) according to their similarities, before to perform hier-
archical classification with common basic classifiers.

Let us present now properties of �̂ and � when the ampli-
tudes of their inputs sets of histograms are modified. Con-
sider a set H = {h1,… , hM} of histograms and a positive real 
number x. If we note (x.H) = {x.h1,… , x.hM} the set contain-
ing all the histograms of H with their bin values multiplied 
by x, then the following properties are verified:

Property 2  Consider two finite  sets H1 and H2 of 
histograms. For all positive real numbers x and y: 
�̂(x.H1, y.H2) = �̂(H1,H2)

Proof  To demonstrate Property 2, we first need to show that 
Ĥ = (̂x.H) for every finite set H of histograms and for all 
positive real number x. ∀x > 0 , ∀h ∈ H and ∀(1 ≤ j ≤ |h|) , 
Eq. 16 proves that Ĥ = (̂x.H).

Let us now deduce Property 2. �̂(x.H1, y.H2) is defined as 
the similarity rate between (̂x.H1) and (̂y.H2) . According to 
Eq. 16, Ĥ1 = (̂x.H1) and Ĥ2 = (̂y.H2) . We can consequently 
deduce that �̂(x.H1, y.H2) is also the similarity rate between 
Ĥ1 and Ĥ2 . However, �̂(H1,H2) is basically defined as the 
similarity rate between Ĥ1 and Ĥ2 . Therefore, we can con-
clude that: �̂(x.H1, y.H2) = �̂(H1,H2) 	�  □

Property 3  Consider a finite set H of histograms. For all 
positive real numbers x and y, we have:

Proof  Equation 17 demonstrates Property 3.

(16)

⎧⎪⎨⎪⎩

�h(j) = h(j) ×
�

100

Hmax

�
1

�(x.h)(j) = x.h(j) ×
�

100

x.Hmax

�
= h(j) ×

�
100

Hmax

�
2

1 = 2 ⇔ ∀x > 0,∀h ∈ H,∀(1 ≤ j ≤ �h�) ∶ �h(j) = �(x.h)(j)

⇔ �H = �(x.H).

�(x.H, y.H) =
min(x, y)

max(x, y)
× 100 (in %).

	�  □

Property 4  Consider two finite sets H1 and H2 of histo-
grams. For all positive real numbers x and y: 
�(x.H1, y.H2) = �(H1,

y

x
.H2) = �( x

y
.H1,H2)

P roo f   E q u a t i o n   1 8  d e m o n s t r a t e s  t h a t 
�(x.H1, y.H2) = �(H1,

y

x
.H2) . A similar reasoning enables to 

demonstrate that �(x.H1, y.H2) = �( x
y
.H1,H2) by factorizing 

y instead of x at the 3rd line of Eq. 18. If x = y , then Prop-
erty 4 becomes: �(x.H1, x.H2) = �(H1,H2).

	�  □

Since �̂ and � are functions that manipulate finite sets, it 
is crucial to describe their behaviors when they are applied 
to the empty set. It is in this perspective that we have adopted 
the two following conventions:

Property 5  �̂(�, �) = �(�, �) = 100% because the empty set 
is naturally completely similar to itself.

(17)

�(x.H, y.H) = �(x.H, y.H) × �̂(x.H, y.H)

= �(x.H, y.H) × �̂(H,H) (Cf. Property 2)

= �(x.H, y.H) × 100

=
min

(
x.Hmax, y.Hmax

)

max
(
x.Hmax, y.Hmax

) × 100

=
Hmax ×min(x, y)

Hmax ×max(x, y)
× 100

=
min(x, y)

max(x, y)
× 100

(18)

�(x.H1, y.H2) = �(x.H1, y.H2) × �̂(x.H1, y.H2)

=
min

(
x.H1max, y.H2max

)

max
(
x.H1max, y.H2max

) × �̂(x.H1, y.H2)

=

x ×min
(
H1max,

y

x
.H2max

)

x ×max
(
H1max,

y

x
.H2max

) × �̂(x.H1, y.H2)

= �
(
H1,

y

x
.H2

)
× �̂(x.H1, y.H2)

= �
(
H1,

y

x
.H2

)
× �̂(H1,H2) (Cf. Property2)

= �
(
H1,

y

x
.H2

)
× �̂

(
H1,

y

x
.H2

)
(Cf. Property2)

= �(H1,
y

x
.H2).
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Property 6  For every finite set of histograms, H≠∅ we 
have: �̂(H, �) = �(H, �) = 0% because the empty set is natu-
rally completely different from any non-empty set.

3.10 � Time cost of �

The computation of � involves two HMMs training 
phases that may consume a lot of time. Consider a set 
H = {h1,… , hm} of histograms. In order to obtain the HMM 
�
Ĥ

 , the duration of the training phase depend on the follow-
ing elements:

1.	 The number |H| of histograms contained in H.
2.	 The number |hi| of bins of each histogram hi ∈ H.
3.	 The shapes of each histogram hi ∈ H.
4.	 The user-defined maximum number of iterations for the 

Bauwm–Welch algorithm (500 in this work).

Therefore, almost all the computation time of � is dedi-
cated to the HMMs training phases in such a way that, the 
time used to compute the amplitude coefficient and the final 
similarity result can easily be neglected. For this reason, 
only the time costs of the HMMs training phases will be 
presented in the rest of this paper.

4 � Experimental results

4.1 � Color image comparison

� can be used to define the color similarity rate (CSR) 
between two sets of color images. A survey of methods for 
color image indexing and retrieval in image databases is 
realized in [35]. Unlike existing approaches that can only 
compare two color images, we rather propose here to com-
pare two sets of color images. We first show how to compute 
the CSR of two single color images, and then, we gener-
alize to sets of color images. Before to achieve this goal, 
let us exhibit the relationship between color images and 
histograms.

4.1.1 � Color histogram of an image

In image processing, the distribution of colors in a color 
image for each dimension of a color space can be repre-
sented by a histogram-based local descriptor called color 
histogram or histogram of colors. In this section, the RGB 
color space is selected. In order to construct color histo-
grams composed of s bins in the RGB color space, each 
primary color p ∈ {R,G,B} is first sampled into s ranges 
of intensities {i1, i2,… , is} . Thereafter, the color histogram 
hp of an image I in each dimension p is constructed in such 

a way that the value of the kth bin of this histogram is the 
number of pixels in I that have the color p with an intensity 
i ∈ ik . Generally, s ∈ {64, 128, 256,…} and in this section, 
the value s = 128 has been selected.

4.1.2 � Color similarity rate between two images

Color histograms suffer from the lack of spatial information; 
therefore, they cannot differentiate patterns of colors [18]. 
Nevertheless, they can still be used to evaluate the overall 
color similarity rate between two images as it is demon-
strated in this section. Consider two color images I and I′ 
, respectively, represented in the RGB color space by their 
color histograms (hR, hG, hB) and (h�

R
, h�

G
, h�

B
) . If we set 

Hp = {hp} and H�
p
= {h�

p
} for each dimension p ∈ {R,G,B} , 

then the similarity rate per dimension between I and I′ can 
first be evaluated by applying � on their corresponding color 
histograms in each dimension. As presented in Eq. 19, this 
outputs a point �I,I′ of the affine space ℝ3 whose compo-
nents are always in [0, 100]. In the rest of this paper, we will 
designate by �n

max
 the point of the affine space ℝn whose 

components are all equal to 100.

Unlike other existing distance measures between histo-
grams, � has the advantage to have an upper bound which is 
100% . Given that the highest similarity rate between I and I′ 
in each dimension is 100% , the distance between I and I′ can 
therefore be seen as the straight-line distance separating the 
point �I,I′ from the point �3

max
 = [100, 100, 100] represent-

ing the maximum possible similarities between any pair of 
images. From this observation, we propose in Eq. 20 to con-
sider the distance d�(I, I�) between I and I′ as the Euclidean 
distance between �I,I′ and �3

max
.

It is obvious that if the color histograms of I and I′ are 
strictly identical in each dimension, then d�(I, I�) = 0 . On 
the other hand, if the color histograms of I and I′ are com-
pletely different in each dimension (i.e., �I,I� = [0, 0, 0] ), 
then Eq. 20 gives 

√
30000 = 100

√
3 . This value is the upper 

bound of the proposed distance between two color images 
in the RGB space. When we divide d�(I, I�) by this upper 
bound, we obtain a dissimilarity coefficient. Therefore, the 
d i s s imi l a r i t y  r a t e  be tween  I  and  I′  g ives 

(19)�I,I� =

⎡⎢⎢⎣

�(HR,H
�
R)

�(HG,H
�
G)

�(HB,H
�
B)

⎤⎥⎥⎦
.

(20)

d�(I, I
�) = L2(�

3
max

,�I,I� )

=

√ ∑
p∈{R,G,B}

(100 − �(Hp,H
�
p))

2.
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100 ×
�

d� (I,I
�)

100
√
3

�
=

d� (I,I
�)√

3
 (in % ). This allows us to define in 

Eq. 21 the CSR between I and I′ noted �(I, I�).

(21)�(I, I�) = 100 −
d�(I, I

�)√
3

(in %).

4.1.3 � Example of CSR computation

The proposed CSR has been calculated for the six images 
of Fig.  7a–f. A human being can obviously observe 
strong overall color similarities between the pair of 
i m a g e s  (I1, I2) = {sky + green sea with stained areas}, 

Fig. 7   The 6 images to be compared. a Image I1 . b Image I3 . c Image I5 . d Image I2 . e Image I4 . f Image I6

Table 3   CSR between the 
distinct pairs of images of 
Fig. 7a–f

The bold value is the CSR of the pair that fulfilled the conjecture

I I′ �I,I′ d�(I, I
�) �(I, I�) in %

R G B

I1 I2 25.97 73.87 58.48 88.81 48.72
I1 I3 40.25 20.94 35.42 118.29 31.71
I1 I4 16.79 11.35 22.40 144.24 16.72
I1 I5 41.69 41.86 77.23 85.44 50.67
I1 I6 39.21 81.70 69.56 70.40 59.35
I2 I3 51.85 29.17 20.37 116.94 32.48
I2 I4 54.58 28.90 19.35 116.72 32.61
I2 I5 22.83 59.57 65.50 93.70 45.90
I2 I6 38.04 57.51 77.70 78.37 54.75
I3 I4 41.84 34.84 33.04 110.06 36.46
I3 I5 56.32 33.92 21.47 111.54 35.61
I3 I6 54.11 29.67 16.77 118.23 31.74
I4 I5 26.07 29.78 26.52 125.68 27.44
I4 I6 23.63 30.46 11.67 135.91 21.53
I5 I6 50.38 59.86 33.09 92.47 46.61

Table 4   Time costs in seconds 
of the HMMs training phases 
for each image I1,… , I6 of 
Fig. 7a–f

I1 I2 I3 I4 I5 I6

HR 1.36 2.89 5.63 13.90 3.82 2.62
HG 6.54 14.02 4.70 14.09 2.63 4.14
HB 3.78 6.91 7.25 4.31 9.25 4.28
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(I3, I4) = {sky + houses made of sand}  a n d 
(I5, I6) = {sky + snow + black mountain} .  The re fo re , 
our conjecture is that �(I1, I2) must be the highest CSR 
between any pair of distinct images including I1 or I2 . The 
same reasoning allows us to conjecture that �(I3, I4) and 
�(I5, I6) should be the highest CSR between any pair of dis-
tinct images including their respective targeted images. We 
calculated the CSR between all the possible pairs of dis-
tinct images in {I1,… , I6} , and the results are presented in 
Table 3. Table 4 shows the time consumed during the HMMs 
training phases for each image.

As it is shown in Table 3, only the pair (I3, I4) fulfilled 
our conjecture. Unfortunately, �(I1, I2) = 48.72% and 
�(I5, I6) = 46.61% are both lower than �(I1, I5) = 50.67% . 
In order to overcome this limitation, the computation of the 
proposed CRS between two color images can be enhanced 
by dividing each image into many regular sub-images before 
to perform the comparison. The next section is devoted to 
this issue.

4.1.4 � Enhanced computation of the CSR

In order to enhance image comparison, the authors of [18] 
proposed to break an image into spatially regular sub-
images, before to calculate the color histograms of each sub-
image. This principle is applied here to break the image I1 
of Fig. 7a into 16 regular sub-images using a 4 × 4 grid, and 
the result is presented in Fig. 8. Each sub-image is indexed 
by a pair (j, k) of labels, respectively, located on the left and 
below the image. 

When this procedure is applied on any image I with a 
n × n grid, the image becomes a set I = {Ij,k|1 ≤ j, k ≤ n} 
composed of n2 sub-images. Consider now two color images 
I and I′ , each broken into n2 sub-images using a n × n grid 
according to this principle to produce the sets 
I = {Ij,k|1 ≤ j, k ≤ n} and I� = {I�

j,k
|1 ≤ j, k ≤ n} . Equa-

tions 20 and 21 are still applied on the two sets I and I′ to, 
respectively, compute the distance between them and their 
similarity rate. The only difference here is that for each 

p ∈ {R,G,B} , the sets Hp and H′
p
 of color histograms are no 

longer singletons as it was previously the case. Each set is 
now composed of  n2  color  histograms,  i .e . , 
Hp = {hj,k,p|1 ≤ j, k ≤ n} and H�

p
= {h�

j,k,p
|1 ≤ j, k ≤ n} . The 

histograms hj,k,p and h′
j,k,p

 are, respectively, the color histo-

grams in the dimension p associated with the sub-image of 
index (j, k) in I and I′ . This implies that the Baum–Welch 
algorithm will be executed for multiple sequences during the 
computation of the three components of �I,I′.

After breaking each image of Fig. 7a–f into n2 sub-
images using a n × n grid with n = 2, 3, 4, 5 (these are the 
values used in [18]), we have once again computed the 
CSR between all the distinct pairs of this set of images. 
The results are presented in Table 5a–d. Although our 
three aforementioned conjectures were just partially ful-
filled for n = 2, 3, 4 , they were all satisfied for n = 5 as it 
can be observed in Table 5d.

We measured the time consumed during the HMMs 
training phases for each image when n = 5 because it is 
the only case where all our three conjectures were satis-
fied. We experimentally observed that each HMM training 
phase roughly took between 9 and 13 min.

4.1.5 � CSR between two sets of images

Consider two sets of color images E = {I1,… , I|E|} and 
E� = {I�

1
,… , I�|E�|} . The CSR between the sets E and E′ is 

computed as follows: For each primary color p ∈ {R,G,B} , 
the two sets of color histograms Hp = {hk,p|1 ≤ k ≤ |E|} 
and H�

p
= {h�

k,p
|1 ≤ k ≤ |E�|} , respectively, associated with 

the images in E and E′ are first constructed. Finally, 
Eqs. 20 and 21 are, respectively, used to compute the dis-
tance and the CSR between E and E′ . Similarly to what is 
done in Sect. 4.1.4, one can initially decide to break each 
image into n2 sub-images, given a user-defined value of n 
in order to compute the enhanced CSR.

4.2 � Comparison of functions curves

A �-dimensional real function is a function with (� − 1) 
real variables, with � = 2, 3, 4,… . In this paper, only the 
values � = 2 and � = 3 are considered, and in this con-
text, the curve of a �-dimensional real function gener-
ally expresses the evolution of a specific phenomenon/
process according to the variations of (� − 1) variables. 
Therefore, comparing the curves of two �-dimensional real 
functions in this context enables to compare the evolution 
of their associated phenomena/processes. Unlike existing 
approaches that generally determine the relative positions Fig. 8   Image I1 of Fig.  7a broken into 16 sub-images using a 4 × 4 

grid. The labels (j, k) allow to index the sub-images
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Table 5   Enhanced CSR of 
the distinct pairs of images of 
Fig. 7a–f

I I′ �I,I′ d�(I, I
�) �(I, I�) in %

R G B

(a) Enhanced CSR using a 2 × 2 grid
   I1 I2 29.84 69.46 61.48 85.66 50.54
   I1 I3 28.76 24.42 27.66 126.57 26.92
   I1 I4 29.01 30.24 18.96 128.35 25.90
   I1 I5 65.27 41.93 80.25 70.48 59.31
   I1 I6 52.07 40.19 42.51 95.81 44.68
   I2 I3 69.37 11.35 12.14 128.51 25.80
   I2 I4 30.74 13.64 8.52 143.61 17.09
   I2 I5 44.51 56.10 62.54 80.06 53.78
   I2 I6 32.07 56.08 35.86 103.23 40.40
   I3 I4 35.57 37.63 62.68 97.12 43.93
   I3 I5 42.14 28.53 30.86 115.05 33.58
   I3 I6 49.49 31.47 26.59 112.41 35.10
   I4 I5 23.63 32.43 12.03 134.67 22.25
   I4 I6 28.55 21.51 25.81 129.50 25.23
   I5 I6 49.41 69.71 45.03 80.62 53.46

(b) Enhanced CSR using a 3 × 3 grid
   I1 I2 40.69 56.71 82.59 75.46 56.43
   I1 I3 57.54 35.83 38.30 98.63 43.06
   I1 I4 18.83 17.58 12.74 144.90 16.34
   I1 I5 35.82 39.37 45.80 103.60 40.18
   I1 I6 42.05 47.63 41.79 97.41 43.76
   I2 I3 46.64 30.07 42.86 104.89 39.44
   I2 I4 24.92 22.73 8.35 141.44 18.34
   I2 I5 29.65 39.26 69.59 97.79 43.54
   I2 I6 36.12 40.27 57.67 97.16 43.90
   I3 I4 25.47 56.65 31.23 110.29 36.33
   I3 I5 80.50 47.95 45.99 77.50 55.25
   I3 I6 76.17 36.20 47.41 86.05 50.32
   I4 I5 14.80 41.74 19.61 130.83 24.47
   I4 I6 15.83 38.91 22.01 130.00 24.94
   I5 I6 53.38 70.16 70.95 62.51 63.91

(c) Enhanced CSR using a 4 × 4 grid
   I1 I2 73.08 69.28 39.15 73.29 57.69
   I1 I3 54.78 18.32 25.41 119.50 31.01
   I1 I4 29.66 14.53 12.93 140.83 18.69
   I1 I5 47.01 56.18 49.29 85.44 50.67
   I1 I6 58.03 53.35 35.63 89.90 48.10
   I2 I3 48.65 21.48 26.85 118.96 31.32
   I2 I4 20.46 17.99 20.20 139.36 19.54
   I2 I5 51.01 69.41 70.60 64.81 62.58
   I2 I6 59.02 68.70 58.72 66.05 61.87
   I3 I4 46.23 74.49 44.53 81.36 53.03
   I3 I5 38.36 27.62 42.51 111.10 35.86
   I3 I6 45.19 25.09 43.11 108.86 37.15
   I4 I5 19.96 22.94 21.83 135.85 21.57
   I4 I6 15.08 20.73 22.27 139.78 19.30
   I5 I6 65.12 86.28 79.06 42.94 75.21
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(above/below) of the curves, we rather want to measure 
the overall similarity rate between the visual shapes of 
these curves.

Consider two finite sets W and Z, each containing the 
curves associated with �-dimensional real functions, with 
� = 2 or � = 3 . We have used � to measure the similarity 
rate �� between the visual shapes of the curves contained 
in W and Z. In this work, only functions whose variables 
belong to unions of bounded intervals are considered. Let 
us now show how to compute �2 before to recursively com-
pute �3 based on �2 . In the rest of this paper, the acronym 
‘ �D ’ stands for ‘ �-dimensional.’

4.2.1 � Computation of ψ2

Consider two 2D functions f and f ′ , respectively, con-
tinuous in the intervals � and �′ . In order to measure the 

similarity rate between the shapes of the curves associated 
with these two functions, the idea here is to sample f in 
� and f ′ in �′ with a fixed sampling step and to compare 
the resulting bar diagrams. The major difficulty here is that 
there may exist real numbers x1 ∈ � or x2 ∈ �� such that 
f (x1) < 0 or f �(x2) < 0 as shown in Fig. 9 for f (x) = sin(x) 
and � = [−2�, 2�]. 

Figure 9 proves that the bar diagrams resulting from the 
sampling of f or f ′ cannot be considered as histograms in 
such conditions, because a histogram is a bar diagram exclu-
sively composed of positive bin values. To overcome this 
difficulty, we propose to lift up or down the curves associ-
ated with f and f ′ in such a way that the lowest point of 
each curve touches the x axis. The two functions f� and 
f ′� obtained after lifting the curves of  f and f ′ are formally 
defined in Eq. 22. According to their definitions, the visual 
shapes and the relative positions of f� and f ′� are, respec-
tively, identical to those of f and f ′ . But unlike f and f ′ , when 
f� is sampled in � and f ′� is sampled in �′ , two bar diagrams 
h and h′ with positive bin values (histograms) are obtained.

Therefore, the similarity rate between the curves associ-
ated with f and f ′ can be computed as the proposed similar-
ity rate between h and h′ . It is important to precise that even 
when f and f ′ are positive functions (i.e., f (x1) ≥ 0 and 

(22)

⎧⎪⎨⎪⎩

f�(x) = (f (x) − �) and

f ��(x) = (f �(x) − �) where

� = min
�
min{f (x)�x ∈ �}, min{f �(x)�x ∈ ��}

�
.

Table 5   (continued) I I′ �I,I′ d�(I, I
�) �(I, I�) in %

R G B

(d) Enhanced CSR using a 5 × 5 grid
   I1 I2 68.30 64.00 65.76 58.94 65.97
   I1 I3 52.30 22.27 21.02 120.65 30.34
   I1 I4 37.26 14.44 13.67 136.79 21.03
   I1 I5 45.74 52.82 48.30 88.57 48.87
   I1 I6 41.48 51.93 44.12 94.12 45.66
   I2 I3 43.81 23.85 27.13 119.44 31.04
   I2 I4 22.43 15.80 11.76 144.54 16.55
   I2 I5 47.07 61.76 78.51 68.74 60.31
   I2 I6 48.05 59.80 73.60 70.79 59.13
   I3 I4 37.49 60.43 57.85 85.15 50.84
   I3 I5 30.74 29.74 29.37 121.34 29.95
   I3 I6 36.33 30.56 29.68 117.56 32.13
   I4 I5 20.06 19.73 18.45 139.58 19.41
   I4 I6 21.76 20.28 16.90 139.22 19.62
   I5 I6 77.71 64.02 69.15 52.38 69.76

Each image is broken into n2 sub-images using a n × n grid, with n = 2, 3, 4, 5 . Bold values are the CSR of 
the pairs that fulfilled the conjectures

Fig. 9   Bar diagram resulting from the sampling of f (x) = sin(x) in 
the interval � = [−2�, 2�]
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f �(x2) ≥ 0 , ∀x1 ∈ � and ∀x2 ∈ �� ), the computation of f� and 
f ′� is still required in order to have the same basis of histo-
gram calculation. Consider now two sets of 2D functions 
W = {f1,… , fn} and Z = {f �

1
,… , f �

m
} where each function fi 

is defined in the interval �i with (1 ≤ i ≤ n) , and each func-
tion f ′

j
 is defined in the interval �′

j
 with (1 ≤ j ≤ m) . The 

similarity rate between W and Z is calculated as follows:

1.	 Select a fixed sampling step. This implicitly determines 
the sampling frequencies of each function fi (1 ≤ i ≤ n) 
and each function f ′

j
 (1 ≤ j ≤ m).

2.	 Compute � using Eq. 23.
3.	 Sample the curves associated with each function 

fi�(x) = (fi(x) − �) with (1 ≤ i ≤ n) and each function 
f �
j�
(x) = (f �

j
(x) − �) with (1 ≤ j ≤ m) at their correspond-

ing sampling frequencies. This will output a histogram 
hi corresponding to each function fi (1 ≤ i ≤ n) and a 
histogram h′

j
 corresponding to each function f ′

j
 

(1 ≤ j ≤ m).
4.	 Use Eq. 24 to compute the similarity rate between W and 

Z.

 

(23)� = min

(
min
1≤i≤n

{fi(x)|x ∈ �i}, min
1≤j≤m

{f �
j
(x)|x ∈ ��

j
})

)

(24)
{

�2(W, Z) = �(H,H�) (in%) where

H = {h1,… , hn} and H
� = {h�

1
,… , h�

m
}.

Consider, for example, the curves associated with the 
two 2D functions f (x) = sin(x) and f �(x) = cos(x) pre-
sented in Fig. 10a with � = �� = [− 2�, 2�] . After calcu-
lating � = −1 , the curves associated with f�(x) = sin(x) + 1 
and f ��(x) = cos(x) + 1 are presented in Fig.  10b. As it 
can be observed, the curves in Fig. 10a, b have identi-
cal shapes and relative positions. The main difference is 
that in Fig. 10b, f�(x) ≥ 0 and f ��(x) ≥ 0 , ∀x ∈ [−2�, 2�] . 
We later sample the curves associated with f� and f ′� 
with a sampling step of 0.05, and the simplified nota-
tion (− 2� ∶ 0.05 ∶ 2�) is adopted in this paper to specify 
sampling frequencies. The resulting histograms h and h′ 
are, respectively, presented in Fig. 10c, d, each histogram 
being composed of 251 bins. Finally, we calculated the 
similarity rate between the curves associated with f and f ′ , 
and we obtained �2({f }, {f

�}) = 60.5% . The HMMs train-
ing phases of h and h′ took, respectively, 0.17 and 0.13 s.

4.2.2 � Recursive computation of ψ3

In this section, a recursive algorithm is proposed to com-
pute the similarity rate between two sets of 3D functions. 
In order to achieve this goal, we assume that we know 
how to compute the similarity rate between two sets com-
posed of 2D functions using the algorithm presented in 
Sect. 4.2.1. Let Z = {z1,… , zn} be a set composed of 3D 
functions. Each function in Z has the following general 
expression zk = fk(x1, x2) , with (1 ≤ k ≤ n) , and each vari-
able xi is defined in the interval �zkxi  , with i ∈ {1, 2} . For 

Fig. 10   Transformation of f (x) = sin(x) and f �(x) = cos(x) into histograms, both defined in [−2�, 2�] . a f (x) = sin(x) and f �(x) = cos(x) . b 
f�(x) = sin(x) + 1 and f �� (x) = cos(x) + 1 . c Histogram h derived from f�(x) = sin(x) + 1 . d Histogram h′ derived from f �� (x) = cos(x) + 1
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each variable xi ∈ {x1, x2} , the set Z can be transformed 
into a new set Zxi composed of 2D functions using algo-
rithm 1. In this algorithm, Sample(�, k) is a function that 
samples the interval � with a sampling step of k.

Algorithm 1 From3Dto2D(Z, xi, step)

1: Zxi ← ∅
2: for each (function zk = fk(x1, x2) ∈ Z) do
3: I ← Sample(ρzkxi

, step)
4: for each (sample y ∈ I) do
5: if (xi = x1) then
6: Zxi

← Zxi
∪{fk(y, x2)}

7: else
8: Zxi ← Zxi∪{fk(x1, y)}
9: end if

10: end for
11: end for
12: return Zxi

Principle of algorithm 1 The new set Zxi is initialized 
(line 1), then the set Z is browsed (line 2) and for each func-
tion zk = fk(x1, x2) found in Z, the interval �zkxi is sampled (line 
3). Thereafter, for each sample y resulting from the sampling 
of �zkxi , a new 2D function is inserted into Zxi : This is the func-
tion zk where the variable xi takes the constant value y (lines 
4–10). The final result is returned at line 12.

Consider now two sets W = {w1,… ,wm} and 
Z = {z1,… , zn} composed of 3D functions. The following 
principle recursively computes in five steps the similarity 
rate between W and Z:

1-Selection of the sampling step A user-defined sam-
pling step is selected here.

2-Transformation into sets of 2D functions For each 
variable xi ∈ {x1, x2} , respectively, transform W and Z 
into the sets Wxi

 and Zxi composed 2D functions using 
algorithm 1.

3-Recursive step Associate with W and Z the point �2
W,Z

 
of ℝ2 whose coordinate in the ith dimension is the similarity 
rate between the sets Wxi

 and Zxi , with i ∈ {1, 2} as shown 
in Eq. 25.

4-Distance computation Given that the highest possible 
similarity on each dimension is 100%, then the distance 
d�(W, Z) between W and Z is computed as the straight-line 
distance between the point �2

W,Z
 and the point �2

max
 as shown 

in Eq. 26.

5-Similarity rate computation When all the components 
of �2

W,Z
 are equal to zero, the upper bound of d�(W, Z) gives 

100
√
2 . Similarly to what is done at Sect. 4.1.2 to derive 

Eq. 21, we deduce that the similarity rate between W and Z 
can be calculated with Eq. 27.

(25)�2
W,Z

=

[
�2(Wx1

, Zx1 )

�2(Wx2
, Zx2 )

]
.

(26)

d�(W, Z) = L2(�
2
max

,�2
W,Z

)

=

√(
100 − �2(Wx1

, Zx1 )
)2

+
(
100 − �2(Wx2

, Zx2 )
)2
.

(27)�3(W, Z) = 100 −
d�(W, Z)√

2
(in %).

Fig. 11   Images of the curves associated with the three 3D functions f1, f2 and f3 with �f1x = [−�,�] , �f1y = [0, 2�] , �f2x = [0, 2�] , �f2y = [−�,�] and 
�
f3
x = �

f3
y = [− 1, 1] . a f1 = x. cos(x) + y. sin(y) . b f2 = x. sin(y) + y. cos(x) . c f3 = x2 + y2
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4.2.3 � Example of computation of  
3

The algorithm presented in Sect. 4.2.2 is applied in this sec-
tion to measure the similarity rate between 3D functions. 
Consider the three following 3D functions:

1.	 f1 = x. cos(x) + y. sin(y)  w i t h  �
f1
x = [−�,�] a n d 

�
f1
y = [0, 2�] presented in Fig. 11a.

2.	 f2 = x. sin(y) + y. cos(x)  w i t h  �
f2
x = [0, 2�] a n d 

�
f2
y = [−�,�] presented in Fig. 11b.

3.	 f3 = x2 + y2 with �f3x = �
f3
y = [− 1, 1] presented in 

Fig. 11c.

Figure 11a–c are drawn with an online available soft-
ware [36]. At the first sight, it is very hard even for a human 
being to compare these curves. The algorithm described in 
Sect. 4.2.2 has been executed on the three distinct pairs of 
singletons ({f1}, {f2}) , ({f1}, {f3}) and ({f2}, {f3}) to compute 
their similarity rate. The results presented in Table 6 suggest 
that f1 and f2 are the nearest with a similarity rate of 42.6% . 

For each singleton {fi} (1 ≤ i ≤ 3) , Table 7 presents the time 
consumed during its HMMs training phases. 

4.3 � Automatic taxonomy generation

4.3.1 � The proposed methodology

� has been experimented in automatic taxonomy generation 
of music genres and color images. The resulting taxonomies 
have been used to perform hierarchical classification of 
music genres and color images. In order to generate taxono-
mies, we adopted the following methodology that shares 
some similarities with the methodology applied in [16]: 
Consider a database C = {c1,… , cm} composed of m classes. 
Every class ci contains |ci| elements (1 ≤ i ≤ m) , each ele-
ment s ∈ ci being represented by one histogram-based 
descriptor hs . Therefore, ci can be observed as a set 
Hi =

�⋃
s∈ci

hs

�
 of histograms. A vector ���⃗Ui is first associated 

with each set Hi , the jth component uij of ���⃗Ui being the pro-
posed similarity between the sets Hi and Hj as described in 
Eq. 28.

Thereafter, the Agglomerative Hierarchical Cluster-
ing (AHC) algorithm  [37] is applied on the vectors ���⃗Ui 
(1 ≤ i ≤ m) to generate a dendrogram from which the taxon-
omy of the database will be derived. Figure 12 summarizes 
the proposed methodology for automatic taxonomy gen-
eration. The AHC algorithm involves the use of a distance 
between two vectors and a distance between two clusters. 
The following distances have been selected:

1.	 Between vectors: L1 (Manhattan), L2 (Euclidean).
2.	 Between clusters: Average and Centroid linkages.

(28)
{

���⃗Ui = [ui1, ui2,… , uim] where

uij = 𝜎(Hi,Hj) with (1 ≤ i, j ≤ m).

Table 6   Similarity rate between the distinct pairs of 3D functions of 
Fig. 11a–c

W Z �2

W,Z
d�(W,Z) �3(W,Z) in %

x y

{f1} {f2} 57.64 30.76 81.17 42.60
{f1} {f3} 38.25 46.43 81.75 42.20
{f2} {f3} 29.96 29.99 99.03 29.98

Table 7   Time consumed during 
the HMMs training phases of 
f1, f2 and f3

The durations are in minutes

W Wx
2

W
y

2

{f1} 45′ 20′

{f2} 22′ 37′

{f3} 4′ 4′

Fig. 12   The proposed methodology for automatic taxonomy generation
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4.3.2 � Experimental databases

For music genres, the selected databases are GTZAN [38] 
and GTZAN+ [39]. GTZAN is among the most used dataset 
in music genre recognition, and it contains the 10 following 
music genres: blues, classical, country, disco, hiphop, jazz, 
metal, pop, reggae and rock. Each genre in GTZAN is rep-
resented by 100 songs, each song having a duration of 30 s. 
The database GTZAN+ is an extension of GTZAN which is 
augmented by the five following Afro genres: bikutsi, mako-
ssa, bamileke, salsa and zouk.

For color images, we have selected the same subset of 
the Corel database [40] which was also selected in [17]. The 
selected subset is composed of the 10 following categories: 
card, dinosaur, eagle, ower, gun, postcard, pyramid, ski, 
sunset and tiger. Each category in Corel contains 100 images 
in the JPEG format, and all the images have the same dimen-
sions which are 126 × 187 or 187 × 126.

4.3.3 � The selected histogram‑based descriptors

For music genres, we have selected the rhythm music 
descriptors called Rhythm Histograms (RHs) proposed by 
Lidy in [1]. These RHs are among the 401 rhythm music 
descriptors used in [16]. It is important to mention here 
that [16] exhibited the actual best hierarchical classification 
accuracies in the databases GTZAN and in GTZAN+. Lidy 
developed an online available MATLAB framework that we 
used to extract a 60-bins RH for each input song [41].

We have characterized each color image of the Corel data-
base by one 64-bins color histogram in the HSV color space, 
following what was done in [17] on this same database.

4.3.4 � Specificity of the proposed methodology

There are at least three major differences between [16] and 
our proposed approach:

1.	 In [16], the taxonomy generation is exclusively based on 
many timbre music descriptors, while in this work the 
taxonomy generation is exclusively based on the RHs 
which are rhythm music descriptors. In both works, the 
classification phase is based on the same set of timbre 
and rhythm music descriptors.

2.	 A song is represented in [16] as a sequential pattern of 
music genres. But in this work, a song is represented as 
a generated Markov chain.

3.	 In [16], there was no formal algorithm to derive the tax-
onomy from the dendrogram outputted by AHC. But in 
this paper, the following formal algorithm is proposed 
to derive the taxonomy: The taxonomy follows exactly 
the general shape of the dendrogram, except for the sub-

trees of the dendrogram in which each node that is not 
a leaf has exactly two children including at least one 
leaf. All the leaves of such sub-trees are merged into 
a k-ary cluster, where k is the number of leaves in the 
sub-tree. When this algorithm is, for example, applied 
to the dendrogram of Fig. 13a, the taxonomy of Fig. 13b 
is derived.

4.3.5 � Generation of music genre taxonomies

The proposed methodology was applied on GTZAN and 
GTZAN+ where each genre is considered as a set composed 
of 100 histograms. The vectors associated with the genres 
in GTZAN and GTZAN+ were first computed with Eq. 28, 
and these vectors are, respectively, presented in Table 10a, b. 
During the computation of these vectors, each HMM train-
ing phase took between 17 and 22 min. Finally, the AHC 
algorithm was executed and the resulting dendrograms were 
used to derive the taxonomies of GTZAN and GTZAN+. Fig-
ure 14a, b shows the two taxonomies T1 and T2 that have been 
derived for GTZAN. Table 8 shows the pair of distances that 
have been used to generate these taxonomies. Only one tax-
onomy T ′ was generated for GTZAN+, and this taxonomy is 
presented in Fig. 14c.

Fig. 13   Principle of taxonomy derivation. The sub-trees that must be 
merged are colored in red. a Input dendrogram. b Generated taxon-
omy

Table 8   The pair of distances that have been used to generate the two 
taxonomies of GTZAN 

Euclidean Manhattan

Average T2 T1

Centroid T1 T1
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4.3.6 � Hierarchical music genre recognition

Similarly to what was done in [16], flat and hierarchical 
classification experiments have been, respectively, real-
ized in the software WEKA [42, 43] and MEKA [44]. 

The four following basic classifiers used in [16] with their 
default settings have also been selected in this work and 
their WEKA/MEKA corresponding names are in brack-
ets: SVMs with polynomial kernels (SMO), multilayers 
perceptrons (MLP), decision trees (J48) and KNNs (IBk). 
After a tenfold cross-validation ( 90% − 10% ), the hier-
archical classification results in GTZAN and GTZAN+ 
are, respectively, presented in Table 9a, b. It is with the 
MLP classifier that the best accuracies 84.9 and 92% were, 
respectively, obtained in GTZAN and GTZAN+. We have 
compared these results with those obtained in [16], and the 
results are in Table 9c.

As it can be observed in Table 9c, the best accuracy 
obtained in [16] for GTZAN is higher than the best accuracy 
obtained in this paper for this same database. However, our 
best accuracy in GTZAN+ is higher than the best accuracy 
obtained in [16] for this database. These results enable us 
to deduce that the genres in GTZAN are better characterized 
by timbre music descriptors, unlike the genres in GTZAN+ 
which are better characterized by rhythm music descriptors.

4.3.7 � Generation of color images taxonomies

Following the same methodology, we used Eq. 28 to com-
pute a vector for each category in Corel. These vectors are 
presented in Table 10c, and each HMM training phase took 
between 10 and 15 min during the computation of these vec-
tors. Finally, a unique taxonomy Tc was generated for Corel, 
and this taxonomy is presented in Fig. 15.

Fig. 14   The taxonomies of GTZAN and GTZAN+. a The taxonomy T1 
generated for GTZAN. b The taxonomy T2 generated for GTZAN. c 
The taxonomy T ′ generated for GTZAN+ 

Table 9   Hierarchical music genre classification results and comparison with [16]

Accuracies are in (%)

Flat T1 T2

(a) In GTZAN
 IBk 63.8 74 76.6
 SMO 72.3 80.1 82.9
 MLP 68.4 81.3 ��.�

 J48 47.3 61.7 66.8

Flat T ′

(b) In GTZAN+
 IBk 65.4 86.7
 SMO 75.5 91.3
 MLP 41.9 ��

 J48 47.3 78.3

Iloga [16] This work

(c)-Comparison between [16] and this work.
 GTZAN ��.� 84.9
 GTZAN+ 85.2 ��
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4.3.8 � Hierarchical recognition of color images

In identical experimental conditions, we realized the hierar-
chical classification of the categories in the Corel database. 
The results presented in Table 11 show that the hierarchical 
classifiers based on the taxonomy generated by the proposed 
approach outperformed all the flat classifiers. The best hier-
archical classification result is 92.5% obtained once again 
with the MLP classifier. This performance is very far from 
the flat classification accuracy of 76.2% exhibited in [17] on 
this same database and using the same image descriptors. It 
is important to mention that in [17], the authors did not per-
form a tenfold cross-validation like in this work. They rather 
randomly divided the database into two partitions (50–50%), 
one for the training and the other for testing. They repeated 
this operation five times, and they took the average accuracy.

4.4 � Text document comparison

The last experiment realized in this paper is the use of � 
to compare finite sets of text documents. A text document 
is basically a sequence of symbols. Depending on the lan-
guage, there exists several tables for matching a symbol with 
a positive numeric code. The most popular tables for English 
are the ASCII and EBCDIC tables [45]. In this paper, the 
ASCII table is preferred. Many approaches to evaluating the 
distance between two text documents are presented in [46]. 
The most widespread principle consists firstly in listing all 
the words appearing in the two documents. Then for each 
document, the number of occurrences of each word found in 
this list is saved into a vector. The final document compari-
son is performed by computing the distance between these 
vectors. The goal of this section is to initially transform each 
document into a set of histograms and then to use � to com-
pare the documents.

4.4.1 � Document transformation

To compare text documents using histograms, each text 
document t composed of |t| distinct words {�1,… ,�|t|} 
must initially be transformed into a set H of histograms. 
If �j[k] refers to the kth symbol in �j , then the following 

transformation is proposed: t is transformed into the set 
Ht = {(a1.h1),… , (a|t|.h|t|)} of histograms where each aj 
(1 ≤ j ≤ |t|) is the number of occurrences of the word �j in 
t, and each hj is the histogram verifying hj(k) = Ascii(�j[k]) 
(1 ≤ k ≤ |�j|).

4.4.2 � Comparison of two documents

In this paper, the comparison is not case-sensitive, but one 
may decide to proceed otherwise. Consider two text docu-
ments t and t′ , respectively, transformed into their sets of 
Ht and Ht′ of histograms according to the former princi-
ple. The similarity rate �(t, t�) between t and t′ is obtained 
by computing the similarity rate between Ht and Ht′ as 
shown in Eq. 29.

4.4.3 � Comparison of two sets of documents

Consider now two sets T = {t1,… , tn} and T � = {t�
1
,… , t�

m
} 

composed of text documents. In order to realize the com-
parison between T and T ′ , we first transform T into the set 
HT =

�⋃n

i=1
Hti

�
 where every Hti

 is the set of histograms 
associated with the document ti . The set T ′ is in a similar way 
transformed into the set HT � =

�⋃m

j=1
Ht�

j

�
 where every Ht′

j
 

is set of histograms associated with the document t′
j
 . Finally, 

Eq. 29 is applied to obtain the similarity rate between T and 
T ′.

4.4.4 � Advantages of �

The first advantage of � is that its computation is customiz-
able. In fact, the symbolic table can be ASCII, EBCDIC or 
any other valid table for the considered language. Addition-
ally, the comparison can be case-sensitive or not. Another 
obvious advantage is the fact that the set of histograms asso-
ciated with a text document t is constructed exclusively with 
the content of t. Unlike most of the existing approaches that 
need to construct a vector of words occurrences from the 
contents of the two documents to be compared. Furthermore, 
one can compare two single text documents, as well as two 
sets, each containing several text documents.

4.4.5 � Example of comparison of two documents

Table 12 shows details about the contents, the number of 
words and the sets of histograms of two text documents t 
and t′ . When Eq. 29 is applied on the documents t and t′
whose contents are presented in the second line of Table 12, 
we obtain �(t, t�) = 39.63% . Around 15 s were consumed 

(29)�(t, t�) = �(Ht,Ht� ).

Fig. 15   The taxonomy Tc of the Corel database
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by each HMMs training phase during the computation of 
�(t, t�).

5 � Conclusion

In this paper, the histograms contained in a finite set H are 
transformed into generated Markov chains that capture 
their the bin values and the visual shapes. These generated 
Markov chains are later used to train a HMM associated 
with H. Finally, these HMMs are used to perform histogram 
comparison. The proposed similarity � between two finite 
sets H1 and H2 of histograms is computed as the similarity 
rate between their associated HMMs, weighted by a suit-
able amplitude coefficient. An important asset of � is that 
it can be calculated no matter what are the bin sizes of the 
histograms. Experimented in color image comparison, in 
the comparison of function curves, in automatic taxonomy 
generation and in text document comparison, � exhibited 
relevant performances which outperformed the existing work 
in the hierarchical classification of the databases GTZAN+ 
and Corel.

The following interesting perspectives can be explored 
in future work:

1.	 Only the RGB color space was used to compare color 
images in Sect. 4.1. Whereas if two color images are 
similar, they might be similar whatever is the selected 
color space. Future work could focus on the computation 
of the CSR in other color spaces. It may also be interest-
ing to combine many color spaces during the computa-
tion of the CSR.

2.	 Another possible issue is the use of other distance meas-
ures than the Euclidean distance to compute the distance 
between two sets of color images, as well as the distance 
between the curves of two sets containing 3D functions. 
Many distance measures listed in Table 1 can be experi-
mented in future work.

3.	 Future work must also propose a modified computation 
scheme for the similarity rate between text documents 
that embed syntactic and semantic information.

4.	 In Table 5d, the enhanced CSR enabled us to group the 
6 images of Fig. 7a–f according to their overall observ-
able color similarities. This result encourages us to use Ta
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Table 11   Hierarchical 
classification results in Corel 

Accuracies are in (%)

Flat Tc

IBk 82.1 91.9
SMO 82.3 91.6
MLP 84.0 ��.�

J48 71.4 87.5
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this enhanced CSR to perform color images clustering 
in future work.

5.	 The CSR and the enhanced CSR between the two images 
presented in Fig. 16a, b (extracted from [35]) are always 
100% , whatever is the grid used to compute the enhanced 
CSR. However, this result is wrong when spatial infor-
mation are considered. Future work must improve the 
proposed approach in order to derive new computation 
schemes that will embed spatial information.

6.	 As it was experimentally observed, the use of � in vari-
ous domains can induce a huge time cost due to the 
HMMs training phases that are highly time consuming. 
Therefore, future work should focus on the execution 
of these HMMs training phases in parallel on separated 
processors. The time cost can be further reduced by exe-
cuting parallel versions of the Bauwm–Welch algorithm. 
This can be done on a cluster of computers like in [47] 
or on a Field-Programmable Gate Array (FPGA) chip 
like in [48].

Table 12   Contents, number of words and sets of histograms of the documents t and t′

The symbol ‘*’ in this table represents the number of occurrences of each word in the considered document

Content Document t Document t′

Yesterday morning, paul went to school after eating because 
his school is away from home. at the end of the day, paul left 
school and went home

Paul went to school yesterday after eating in the morning, this 
is because his school is away from his house. he went back to 
his house after classes

Length |t| = 21 words |t�| = 20 words

�j ∗ hj ∈ Ht �′
j

∗ h�
j
∈ Ht�

Set of histo. Yesterday 1 121 101 115 116 101 114 100 97 121 Paul 1 112 97 117 108
Morning 1 109 111 114 110 105 110 103 Went 2 238 202 220 232
Paul 2 224 194 234 216 To 2 232 222
Went 2 238 202 220 232 School 3 345 297 312 333 333 324
To 1 116 111 Yesterday 1 121 101 115 116 101 114 100 97 121
School 3 345 297 312 333 333 324 After 2 194 204 232 202 228
After 1 97 102 116 101 114 Eating 1 101 97 116 105 110 103
Eating 1 101 97 116 105 110 103 In 1 105 110
Because 1 98 101 99 97 117 115 101 The 1 116 104 101
His 1 104 105 115 Morning 1 109 111 114 110 105 110 103
Is 1 105 115 This 1 116 104 105 115
Away 1 97 119 97 121 Is 2 210 230
From 1 102 114 111 109 Because 1 98 101 99 97 117 115 101
Home 3 312 333 327 303 His 3 312 315 345
At 1 97 116 Away 1 97 119 97 121
The 2 232 208 202 From 1 102 114 111 109
End 1 101 110 100 House 2 208 222 234 230 202
Of 1 111 102 He 1 104 101
Day 1 100 97 121 Back 1 98 97 99 107
Left 1 108 101 102 116 Classes 1 99 108 97 115 115 101 115
And 1 97 110 100
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7.	 In this paper, the maximum number of iterations of the 
Bauwm–Welch algorithm is set to 500, which is indeed 
a high value. For example, we have once again com-
pared the three 3D functions f1 , f2 and f3 of the exam-
ple presented in Sect. 4.2.3 with a maximum number 
of iterations of 50 for the Baum–Welch algorithm. The 
results exhibited in Table 13 prove that the time costs 
are considerably reduced and the impact on the final 
similarities is acceptable. An analysis must be realized 
in future work to study the impact of the reduction of 
this maximum value on the similarity rate accuracy.
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(c) Time for 500 iterations
   {f1} 45′ 20′

   {f2} 22′ 37′

   {f3} 4′ 4′

(d) Time for 50 iterations
   {f1} 3′30s 3′50s

   {f2} 3′30s 4′

   {f3} 0′27s 0′30s

Fig. 16   Images that demonstrate the lack of spatial information dur-
ing the computation of the CSR. a Image 1. b Image 2
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