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Neural Machine Translation
Models



Sequence-to-sequence models | Recurrent networks

Encoder

x1 x2 x3 . . . x|x |

s1 s2 s3 s|x |. . .

Bidirectional encoder

s ′1 s ′2 s ′3 s ′|x |. . .

[Graves, 2013, Sutskever et al., 2014, Cho et al., 2014, Bahdanau et al., 2015]
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Sequence-to-sequence models | Recurrent networks

s1 s2 s3 s|x |. . .
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Codes

Decoder

Interface

<BOS>

h0

y1

h1

y2

h2 . . .

. . . y|y |

h|y |
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Sequence-to-sequence models | Convolutional networks

x1pad x2 x3 . . . x|x | pad

Encoder

s11 s12 s13 s1|x |. . .

pad

s21 s22 s23 s2|x |

pad

[Kalchbrenner et al., 2014, Kim, 2014, Gehring et al., 2017]
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Sequence-to-sequence models | Convolutional networks

y1pad y2 y3 . . . y|y |

Decoder (Causal convolutions)

s11 s12 s13 s1|x |. . .pad

s21 s22 s23 s2|x |

[Kalchbrenner et al., 2014, Kim, 2014, Gehring et al., 2017]
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Sequence-to-sequence models | Transformer networks

x1 x2 x3 . . . x|x |

Encoder (self-attention)

s11 s12 s13 s1|x |. . .

[Vaswani et al., 2017]
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Sequence-to-sequence models | Transformer networks

y1 y2 y3 . . . y|y |

Decoder (masked self-attention)

h11 h12 h13 h1|y |. . .

[Vaswani et al., 2017]
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Sequence-to-sequence models

x1

s11

x2

s12

x3

s3

s21 s22 s23
. . .

. . .

. . . x|x |

s1|x |

Recurrent
1. Unbounded

dependencies.

2. O(T ) sequential
steps.

3. Full context.

Convolutional
1. Bounded

dependencies.

2. O(1) sequential
steps.

3. Incrementally
built context.

Transformer
1. Unbounded

dependencies.

2. O(1) sequential
steps.

3. Full context.
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Encoder-decoder interfacing

s1 s2 s3 s|x |. . .

Codes

Decoder

Interface

h0 h1 h2 . . . h|y |

Single vector:

• context = s|x |.

• context = 1
|x |

∑
si

• context = max si
Only at h0 or at every time step.

Attention mechanisms:

ei = score(si , ht−1), ∀i

α = sof tmax(ei)i

contextt =
∑
i

αisi
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Illustration: NMT Lab

• You will train your first NMT system using OpenNMT toolkit

• Based on RNNs with attention (but OpenNMT also implements
Transformer models)

• Language pair will be French-English (BTEC corpus)

• Training might take a while (be patient)

• Let’s start !
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