
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260205306

Parallel Implementation of Baum-Welch Algorithm

Conference Paper · January 2006

CITATION

1
READS

62

2 authors, including:

Some of the authors of this publication are also working on these related projects:

AutoManSec 4 CloudIoT - Autonomic Management and Security for Cloud and IoT View project

Maxim Anikeev

Southern Federal University

35 PUBLICATIONS 71 CITATIONS

SEE PROFILE

All content following this page was uploaded by Maxim Anikeev on 25 November 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/260205306_Parallel_Implementation_of_Baum-Welch_Algorithm?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/260205306_Parallel_Implementation_of_Baum-Welch_Algorithm?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/AutoManSec-4-CloudIoT-Autonomic-Management-and-Security-for-Cloud-and-IoT?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maxim_Anikeev?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maxim_Anikeev?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southern_Federal_University?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maxim_Anikeev?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maxim_Anikeev?enrichId=rgreq-e7138c2e0f8f3db4d86f57dd51e6e820-XXX&enrichSource=Y292ZXJQYWdlOzI2MDIwNTMwNjtBUzo0MzIyNzc3MzA2NjQ0NDhAMTQ4MDA3NDQ1MDU4OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Workshop on Computer Science and Information Technologies CSIT’2006, Karlsruhe, Germany, 2006

1

Parallel Implementation of Baum-Welch Algorithm

M.V. Anikeev, O.B. Makarevich

Department of Information Security

Taganrog State University of Radio Engineering

Taganrog, Russia

e-mail: anikeev@users.tsure.ru, mak@tsure.ru

Abstract
1

Besides the fact that hidden Markov models

(HMMs) became a state-of-the-art technique for

speech recognition applications, they find major use

in other areas as well. Some problems require huge

training sets for fitting HMMs to experimental data,

which leads to increased complexity of training

algorithms. We propose a simple strategy of

organizing parallel HMM training, which can be

effectively implemented using inexpensive network

clusters.

1. Introduction

Hidden Markov models (HMMs) find major application

in a variety of areas, which demand powerful pattern

recognition techniques. These areas include speech

processing and recognition [1, 2], communications [3],

control [4, 5], image and character recognition [6, 7], and

genetics [8]. HMMs are favoured due to their ability to

describe many real-world processes, which do not strictly

conform to the standard Markov assumption. At the same

time, HMMs are not much more complex, than regular

discrete Markov chains.

In recent years some attempts have been made to apply

HMMs to various computer security problems [9, 10, 11,

12]. C. Warrender et al. [12] proposed the idea to use

HMMs as normal behaviour profiles for security-critical

processes. Such profiles are used to discover behaviour

deviations of system processes, which are often caused by

intrusion attempts. Unlike classic HMM applications, this

approach demands much more training data to be

collected to build adequate behaviour profiles. Programs

behaviour often tends to be extremely diverse, thus in

order to build a comprehensive profile one must observe

1
 Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the CSIT copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Institute for Contemporary Education JMSUICE. To

copy otherwise, or to republish, requires a fee and/or special

permission from the JMSUICE.

Proceedings of the 8
th

 International Workshop on

Computer Science and Information Technologies

CSIT’2006

Karlsruhe, Germany, 2006

program execution for a long time in different modes, and

collect a lot of relevant data.

The authors of [12] applied a set of techniques to the

detection of anomalies in traces of system calls. They

compared HMMs with several other methods of data

analysis, and found out that HMMs can usually provide

slightly better detection/false positives rate, than the

others. At the same time, all the algorithms related to the

HMM (especially training algorithms) are much more

computationally complex than their competitors. It took

several months for authors to train all the HMMs, which

were used for testing later. Of course if we think of

applying this HMM-based approach to real problems, we

should decrease this training time significantly; otherwise,

there is a risk that the trained HMMs, corresponding to

individual programmes become obsolete before their

training is over.

The aim of our research is to design a faster way of HMM

training, which could allow their effective use in intrusion

detection as it is proposed in [12]. There is probably no

need for faster HMM training in areas such as speech

recognition, where collection of training data takes

reasonably more time than the training itself. However,

this acceleration might be useful for other areas, where

big volumes of data should processed in real time.

2. Related Work

As soon as the necessity of constructing fast HMM

training algorithms arises in selected applications only,

there have been relatively few publications devoted to

this topic.

W. Turin [13] proposed unidirectional and parallel

Baum-Welch algorithm. The described parallel algorithm

is mainly designed for signal processing applications. It is

based on temporal splitting of a training sequence, and it

relies on some features of observation sequences, such as

continuous repetitions of identical observations. The

author claims that the proposed algorithm reduces Baum-

Welch training time if implemented on a massively

parallel computer. However, no experimental data is

given, which might show how well this algorithms works

with different kinds of training sets.

A. Espinoza-Manzo et al. [14] made another attempt to

design a fast implementation of Baum-Welch algorithm.

Parallel Implementation of Baum-Welch Algorithm

2

They made use of the fact that each iteration of this

algorithm can be split into three separate stages, and

designed the respective hardware pipeline architecture. It

was synthesized on 40MHz FPGA chip, which executed

Baum-Welch algorithm slightly slower than a serial

software solution running on 500MHz PC.

3. Hidden Markov Model

3.1. Definition and notation

The comprehensive HMM tutorial can be found in [1];

here we focus on the basic definitions and training

algorithm only.

An HMM can be defined as a five-tuple λ = {S, V, A, B,

π}, where S is a set of N states; V is a set of M observable

symbols; A is an NxN transition probability matrix,

whose elements are defined as aij = P[q(t)=si | q(t-1)=sj];

B is an NxM observation probability matrix, whose

elements are defined as bjk = P[o(t) = vk | q(t) = sj]; and π

is an N-element initial state distribution vector, whose

elements are defined as πi = P[q(1)=si].

There are three basic problems commonly associated with

HMMs:

 Evaluation problem implies finding the

probability of generating an observation

sequence given an HMM, i.e. P(O|λ). Two

standard algorithms with equal computational

complexity are known for solving this problem;

they are called forward and backward

algorithms.

 Recognition problem implies finding the most

probable hidden state sequence given an

observation sequence and an HMM. This

sequence can be found with Viterbi algorithm.

 Training problem aims to vary A, B and π

elements of the given HMM in order to

maximize conditional probability of generating a

given observation sequence. Traditional search

optimisation methods such as Newton-Raphson

or conjugate gradients are not robust and

difficult to adapt for using with HMM,

especially when the latter have many hidden

states. On the other hand, Baum-Welch

algorithm is robust for tuning HMM parameters

using either single or multiple observation

sequences.

3.2. Sequential Baum-Welch Algorithm

HMMs can be trained using either single or multiple

observation sequences.

Single Observation Sequences

Suppose we have an observation sequence O={o1, o2,…

oT} and an HMM λ=(A, B, π). In this case the aim of

training procedure is adjusting the elements of λ to

maximize P(O| λ).

The first stage of Baum-Welch algorithm constitutes

forward and backward algorithms, which are used for

solving the evaluation problem described above. These

algorithms compute forward variables α and backward

variables β respectively according to the following

recurrent formulae:

)()(11 obi ii

 (1)

)()()(1

1

1

 tj

N

i

ijtt obaij

. (2)

1)(iT (3)

N

j

ttjijt jobai
1

11)()()(

 (4)

On the next stage other auxiliary matrices ξ and γ are

computed in the following way:

N

i

N

j

ttjijt

ttjijt

t

jObai

jObai
ji

1 1

11

11

)()()(

)()()(
),(

 (5)

N

j

tt

tt
t

jj

ii
i

1

)()(

)()(
)(

 . (6)

And finally it is possible to update all the HMM

parameter values:

)(' 1 ii (7)

1

1

1

1

)(

),(

'
T

t

t

T

t

t

ij

i

ji

a

 (8)

1

1

1

..
1

)(

)(

)('
T

t

t

T

vOts
t

t

j

j

j

lb lt

. (9)

According to [1], the resulting model λ'=(A', B', π') is

either equivalent to λ, or such that P(O|λ')>P(O| λ). Thus,

if all the steps (1)-(9) are repeated until changes on a

successive iteration are not significant, the resulting λ'

will correspond to the local maximum of P(O|λ) target

function.

Workshop on Computer Science and Information Technologies CSIT’2006, Karlsruhe, Germany, 2006

3

Multiple Observation Sequences

Oftentimes, HMMs have to be trained to match a set of

observation sequences entirely. In this case, a training set

is defined as O={O
(1)

, O
(2)

,… O
(K)

}, where each O
(k)

is an

observation sequence of an arbitrary length. The target

function to be maximized is the product of all the separate

probabilities P(O
(k)

|λ).

Expressions (1)-(6) remain the same for multiple

observation training, however it should be taken into

account that each α
(k)

, β
(k)

, ξ
(k)

, and γ
(k)

 variables

correspond to the respective members of the training set,

and should be computed individually for each O
(k)

. HMM

update procedures take the following form:

K

k

k

i i
K 1

)(

1)(
1

' (10)

K

k

T

t

k

t

K

k

T

t

k

t

ij

i

ji

a

1

1

1

)(

1

1

1

)(

)(

),(

 (11)

K

k

T

t

k

t

K

k

T

vOts

t

k

t

j

j

j

lb lt

1

1

1

)(

1

1

..

1

)(

)(

)(

)(

 (12)

Computation of intermediate values and successive HMM

update procedures are enclosed in a loop, which ends

whenever statistical difference between newly updated

HMM is not notably different from the one obtained on

the previous iteration.

4. Organization of Parallel Computations in

Baum-Welch Algorithm

The proposed parallel implementation of Baum-Welch

algorithm is suitable for multiple-observation training

only. It is based on the following prerequisites of

effective parallelism:

 Each iteration of Baum-Welch algorithm for

multiple observation sequences consists of

complex computations of various intermediate

values (1)-(6) followed by relatively simple

update procedures (10)-(12).

 Calculation of each subset of intermediate values

(α
(k)

, β
(k)

, ξ
(k)

, and γ
(k)

) depends on current HMM

parameters, and O
(k)

 observation sequence only.

These two facts lead to a straightforward data

decomposition strategy. That is the entire training set O is

split into subsets, and a separate process can do most of

the required computations for each subset. Only then, all

the computed values should be used to update current

HMM parameters, and the training either proceeds to the

next iteration or stops.

Suppose the training set is split into the following disjoin

subsets: O = Ω1 Ω2 … ΩU. Denote the following

intermediate parameters for an arbitrary subset Ωu:

u

T

t

tij jiunumA
1

1

),()((13)

u

lt

T

vOts

t
tjl junumB

1

..

1

)()((14)

u

T

t

tj juden
1

)()((15)

These computations, as well as all the preceding

computations according to (1)-(6) expressions, can be

executed in context of a separate process, which takes

training data from Ωu subset only. Whenever each parallel

process finishes calculation of all of its numA, numB, and

den values, it is possible to update HMM parameters

within a single sequential process, according to the

following expressions:

)()2()1(

)()2()1(
'

Udendenden

UnumAnumAnumA
a

jjj

ijijij

ij

 (16)

)()2()1(

)()2()1(
)('

Udendenden

UnumBnumBnumB
lb

jjj

jljljl

j

(17)

Update procedure for π vector values is obvious, and it

can be done according to (10) with respect to parallel

execution.

It is important to note that for big training sets containing

long observation sequences (i.e. for those demanding

much faster training implementation), the total

complexity of parallel steps (1)-(6) and (13)-(15)

significantly exceeds total complexity of sequential steps

(10), (16), and (17). This means that the theoretical

speedup limit stated by Amdahl’s law is likely to be very

high for many applied problems.

5. Implementation and Results

Unlike the approach presented in [13], which is mainly

designed for massively parallel computers, the method

described in this paper is more suitable for distributed

cluster systems based on message-passing paradigm. The

fact, that computations executed within individual parallel

processes are mostly independent from each other, and

data exchange between processes is relatively low, makes

it possible to implement this algorithm on inexpensive

Parallel Implementation of Baum-Welch Algorithm

4

network clusters, which use standard communication

equipment, such as 100Mb/s Ethernet cards.

As soon as the complexity of Baum-Welch training

depends on the number of observation symbols, rather

than the number of observation sequences, it is important

to organize training set decomposition in a way that Ωu

subsets contain approximately the same number of

observation symbols. Otherwise, some parallel branches

will complete their execution much earlier than the

others, which will lead to the waste of computational

resources.

The proposed parallel algorithm was implemented for

cluster architecture using Message-Passing Interface

(MPI) standard. As soon as the need for faster HMM

training was mainly caused by intrusion detection

problems, the designed implementation was tested using

Computer Immune Systems dataset of the University of

New Mexico (http://www.cs.unm.edu/~immsec).

Testing was performed on the network cluster consisting

of Celeron 2.4GHz computers with 256Mb RAM each,

and connected using 100Mbit/s Ethernet. Experimental

speedup values were around 1.93-1.96 for the cluster

made of two computers, and they were as high as 2.7-2.8

for the cluster consisting of three computers.

6. Conclusion

The described parallel implementation of Baum-Welch

algorithm for multiple observation sequences has

advantages compared with the sequential execution when

training data is big enough. Although the need for faster

HMM training was caused by intrusion detection

problems, the designed implementation does not depend

on any features of a particular applied area, and thus it

can be used for other applications as well.

Compared with the approach presented in [13], this

implementation strategy seems to be more suitable for

inexpensive network clusters, rather than for massively

parallel computers. Also, it does not require any

dedicated hardware modules as in [14].

Acknowledgments

This work was supported by grants from Russian

Foundation for Basic Research (04-07-90137 and 06-07-

89010-a).

References

1. Rabiner, L. R. “A tutorial on Hidden Markov Models

and selected applications in speech recognition”. In:

Proc. IEEE, 77(2), 1986, pp. 257-286.

2. “Noise reduction in speech application”. Edited by G.

M. Davis, CRC Press LLC, 2002.

3. Turin, W., van Nobelen, R. “Hidden Markov

modeling of flat fading channels”. IEEE Journal on

Selected Areas is Communications, Vol. 16, Dec.

1998, pp. 1809-1817.

4. Nechyba, M.C., Xu, Y. “Stochastic similarity for

validating human control strategy models”. IEEE

Trans. Robotics and Automation, Vol. 14, Issue 3, Jun

1998, pp. 437-451.

5. Mangold, S., Kyriazakos, S. “Applying pattern

recognition techniques based on hidden Markov

models for vehicular position location in cellular

networks”. In: Proc. IEEE Vehicular Technology

Conference, Vol. 2, 1999, pp. 780-784.

6. Eickeller, S., Müller, S., Rigoll, G. “Recognition of

JPEG compressed face images based on statistical

methods”. Image and Vision Computing, Vol. 18,

2000, pp. 279-287.

7. Elms, A. J., Procter, S., Illingworth, J. “The advantage

of using and HMM-based approach for faxed word

recognition”. International Journal on Document

Analysis and Recognition (IJDAR), 1998; 1(1), pp.

18-36.

8. Kulp, D., Haussler, D., Reese, M. G., Eeckman, F. H.

“A generalized hidden Markov model for the

recognition of human genes in DNA”. In: Proc. 4
th

Intl. Conf. on Intelligent Systems for Molecular

Biology, 1996, pp. 134-142.

9. Lane, T. “Hidden Markov models for

human/computer interface modeling”. In: Proc. of the

IJCAI-99 Workshop on Learning About Users, 1999,

pp. 35-44.

10. Park, H.-J., Cho, S.-B. “Efficient anomaly detection

by modeling privilege flows using hidden Markov

model”. Computers & Security, 2003; 1(22), pp. 45-

55.

11. Ye, N. “A Markov chain model of temporal behavior

for anomaly detection”. In: Proc. 2000 IEEE

Workshop on Information Assurance and Security,

2000, pp. 171-174.

12. Warrender, C., Forrest, S., Pearlmutter, B. “Detecting

intrusions using system calls: alternative data

models”. In: Proc. 1999 IEEE Symposium on Security

and Privacy, 1999, pp. 133-145.

13. Turin, W. “Unidirectional and parallel Baum-Welch

algorithms”. In: IEEE Trans. Of Speech and Audio

Processing, Nov. 1998, pp. 516-523.

14. Espinosa-Manzo, A., López-López, A., Arias-Estrada,

M. O. “Implementing Hidden Markov Models in a

Hardware Architecture”. In: Proc. International

Meeting of Computer Science ENC ’01, Vol. II,

Aguascalientes, México, September 15-19 2001, pp.

1007-1016.

View publication statsView publication stats

https://www.researchgate.net/publication/260205306

