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Abstract
1
 

Besides the fact that hidden Markov models 

(HMMs) became a state-of-the-art technique for 

speech recognition applications, they find major use 

in other areas as well. Some problems require huge 

training sets for fitting HMMs to experimental data, 

which leads to increased complexity of training 

algorithms. We propose a simple strategy of 

organizing parallel HMM training, which can be 

effectively implemented using inexpensive network 

clusters. 

1. Introduction 

Hidden Markov models (HMMs) find major application 

in a variety of areas, which demand powerful pattern 

recognition techniques. These areas include speech 

processing and recognition [1, 2], communications [3], 

control [4, 5], image and character recognition [6, 7], and 

genetics [8]. HMMs are favoured due to their ability to 

describe many real-world processes, which do not strictly 

conform to the standard Markov assumption. At the same 

time, HMMs are not much more complex, than regular 

discrete Markov chains. 

In recent years some attempts have been made to apply 

HMMs to various computer security problems [9, 10, 11, 

12]. C. Warrender et al. [12] proposed the idea to use 

HMMs as normal behaviour profiles for security-critical 

processes. Such profiles are used to discover behaviour 

deviations of system processes, which are often caused by 

intrusion attempts. Unlike classic HMM applications, this 

approach demands much more training data to be 

collected to build adequate behaviour profiles. Programs 

behaviour often tends to be extremely diverse, thus in 

order to build a comprehensive profile one must observe 
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program execution for a long time in different modes, and 

collect a lot of relevant data. 

The authors of [12] applied a set of techniques to the 

detection of anomalies in traces of system calls. They 

compared HMMs with several other methods of data 

analysis, and found out that HMMs can usually provide 

slightly better detection/false positives rate, than the 

others. At the same time, all the algorithms related to the 

HMM (especially training algorithms) are much more 

computationally complex than their competitors. It took 

several months for authors to train all the HMMs, which 

were used for testing later. Of course if we think of 

applying this HMM-based approach to real problems, we 

should decrease this training time significantly; otherwise, 

there is a risk that the trained HMMs, corresponding to 

individual programmes become obsolete before their 

training is over. 

The aim of our research is to design a faster way of HMM 

training, which could allow their effective use in intrusion 

detection as it is proposed in [12]. There is probably no 

need for faster HMM training in areas such as speech 

recognition, where collection of training data takes 

reasonably more time than the training itself. However, 

this acceleration might be useful for other areas, where 

big volumes of data should processed in real time. 

2. Related Work 

As soon as the necessity of constructing fast HMM 

training algorithms arises in selected applications only, 

there have been relatively few publications devoted to 

this topic. 

W. Turin [13] proposed unidirectional and parallel 

Baum-Welch algorithm. The described parallel algorithm 

is mainly designed for signal processing applications. It is 

based on temporal splitting of a training sequence, and it 

relies on some features of observation sequences, such as 

continuous repetitions of identical observations. The 

author claims that the proposed algorithm reduces Baum-

Welch training time if implemented on a massively 

parallel computer. However, no experimental data is 

given, which might show how well this algorithms works 

with different kinds of training sets. 

A. Espinoza-Manzo et al. [14] made another attempt to 

design a fast implementation of Baum-Welch algorithm. 
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They made use of the fact that each iteration of this 

algorithm can be split into three separate stages, and 

designed the respective hardware pipeline architecture. It 

was synthesized on 40MHz FPGA chip, which executed 

Baum-Welch algorithm slightly slower than a serial 

software solution running on 500MHz PC. 

3. Hidden Markov Model 

3.1. Definition and notation 

The comprehensive HMM tutorial can be found in [1]; 

here we focus on the basic definitions and training 

algorithm only. 

An HMM can be defined as a five-tuple λ = {S, V, A, B, 

π}, where S is a set of N states; V is a set of M observable 

symbols; A is an NxN transition probability matrix, 

whose elements are defined as aij = P[q(t)=si | q(t-1)=sj]; 

B is an NxM observation probability matrix, whose 

elements are defined as bjk = P[o(t) = vk | q(t) = sj]; and π 

is an N-element initial state distribution vector, whose 

elements are defined as πi = P[q(1)=si]. 

There are three basic problems commonly associated with 

HMMs: 

 Evaluation problem implies finding the 

probability of generating an observation 

sequence given an HMM, i.e. P(O|λ). Two 

standard algorithms with equal computational 

complexity are known for solving this problem; 

they are called forward and backward 

algorithms. 

 Recognition problem implies finding the most 

probable hidden state sequence given an 

observation sequence and an HMM. This 

sequence can be found with Viterbi algorithm. 

 Training problem aims to vary A, B and π 

elements of the given HMM in order to 

maximize conditional probability of generating a 

given observation sequence. Traditional search 

optimisation methods such as Newton-Raphson 

or conjugate gradients are not robust and 

difficult to adapt for using with HMM, 

especially when the latter have many hidden 

states. On the other hand, Baum-Welch 

algorithm is robust for tuning HMM parameters 

using either single or multiple observation 

sequences. 

3.2. Sequential Baum-Welch Algorithm 

HMMs can be trained using either single or multiple 

observation sequences. 

Single Observation Sequences 

Suppose we have an observation sequence O={o1, o2,… 

oT} and an HMM λ=(A, B, π). In this case the aim of 

training procedure is adjusting the elements of λ to 

maximize P(O| λ). 

The first stage of Baum-Welch algorithm constitutes 

forward and backward algorithms, which are used for 

solving the evaluation problem described above. These 

algorithms compute forward variables α and backward 

variables β respectively according to the following 

recurrent formulae: 
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On the next stage other auxiliary matrices ξ and γ are 

computed in the following way: 
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And finally it is possible to update all the HMM 

parameter values: 
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According to [1], the resulting model λ'=(A', B', π') is 

either equivalent to λ, or such that P(O|λ')>P(O| λ). Thus, 

if all the steps (1)-(9) are repeated until changes on a 

successive iteration are not significant, the resulting λ' 

will correspond to the local maximum of P(O|λ) target 

function. 
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Multiple Observation Sequences 

Oftentimes, HMMs have to be trained to match a set of 

observation sequences entirely. In this case, a training set 

is defined as O={O
(1)

, O
(2)

,… O
(K)

}, where each O
(k) 

is an 

observation sequence of an arbitrary length. The target 

function to be maximized is the product of all the separate 

probabilities P(O
(k)

|λ). 

Expressions (1)-(6) remain the same for multiple 

observation training, however it should be taken into 

account that each α
(k)

, β
(k)

, ξ
(k)

, and γ
(k)

 variables 

correspond to the respective members of the training set, 

and should be computed individually for each O
(k)

. HMM 

update procedures take the following form: 
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Computation of intermediate values and successive HMM 

update procedures are enclosed in a loop, which ends 

whenever statistical difference between newly updated 

HMM is not notably different from the one obtained on 

the previous iteration. 

4. Organization of Parallel Computations in 

Baum-Welch Algorithm 

The proposed parallel implementation of Baum-Welch 

algorithm is suitable for multiple-observation training 

only. It is based on the following prerequisites of 

effective parallelism: 

 Each iteration of Baum-Welch algorithm for 

multiple observation sequences consists of 

complex computations of various intermediate 

values (1)-(6) followed by relatively simple 

update procedures (10)-(12). 

 Calculation of each subset of intermediate values 

(α
(k)

, β
(k)

, ξ
(k)

, and γ
(k)

) depends on current HMM 

parameters, and O
(k)

 observation sequence only. 

These two facts lead to a straightforward data 

decomposition strategy. That is the entire training set O is 

split into subsets, and a separate process can do most of 

the required computations for each subset. Only then, all 

the computed values should be used to update current 

HMM parameters, and the training either proceeds to the 

next iteration or stops. 

Suppose the training set is split into the following disjoin 

subsets: O = Ω1  Ω2  …  ΩU. Denote the following 

intermediate parameters for an arbitrary subset Ωu: 
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These computations, as well as all the preceding 

computations according to (1)-(6) expressions, can be 

executed in context of a separate process, which takes 

training data from Ωu subset only. Whenever each parallel 

process finishes calculation of all of its numA, numB, and 

den values, it is possible to update HMM parameters 

within a single sequential process, according to the 

following expressions: 
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Update procedure for π vector values is obvious, and it 

can be done according to (10) with respect to parallel 

execution. 

It is important to note that for big training sets containing 

long observation sequences (i.e. for those demanding 

much faster training implementation), the total 

complexity of parallel steps (1)-(6) and (13)-(15) 

significantly exceeds total complexity of sequential steps 

(10), (16), and (17). This means that the theoretical 

speedup limit stated by Amdahl’s law is likely to be very 

high for many applied problems. 

5. Implementation and Results 

Unlike the approach presented in [13], which is mainly 

designed for massively parallel computers, the method 

described in this paper is more suitable for distributed 

cluster systems based on message-passing paradigm. The 

fact, that computations executed within individual parallel 

processes are mostly independent from each other, and 

data exchange between processes is relatively low, makes 

it possible to implement this algorithm on inexpensive 
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network clusters, which use standard communication 

equipment, such as 100Mb/s Ethernet cards. 

As soon as the complexity of Baum-Welch training 

depends on the number of observation symbols, rather 

than the number of observation sequences, it is important 

to organize training set decomposition in a way that Ωu 

subsets contain approximately the same number of 

observation symbols. Otherwise, some parallel branches 

will complete their execution much earlier than the 

others, which will lead to the waste of computational 

resources. 

The proposed parallel algorithm was implemented for 

cluster architecture using Message-Passing Interface 

(MPI) standard. As soon as the need for faster HMM 

training was mainly caused by intrusion detection 

problems, the designed implementation was tested using 

Computer Immune Systems dataset of the University of 

New Mexico (http://www.cs.unm.edu/~immsec). 

Testing was performed on the network cluster consisting 

of Celeron 2.4GHz computers with 256Mb RAM each, 

and connected using 100Mbit/s Ethernet. Experimental 

speedup values were around 1.93-1.96 for the cluster 

made of two computers, and they were as high as 2.7-2.8 

for the cluster consisting of three computers. 

6. Conclusion 

The described parallel implementation of Baum-Welch 

algorithm for multiple observation sequences has 

advantages compared with the sequential execution when 

training data is big enough. Although the need for faster 

HMM training was caused by intrusion detection 

problems, the designed implementation does not depend 

on any features of a particular applied area, and thus it 

can be used for other applications as well. 

Compared with the approach presented in [13], this 

implementation strategy seems to be more suitable for 

inexpensive network clusters, rather than for massively 

parallel computers. Also, it does not require any 

dedicated hardware modules as in [14]. 
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